[U-Boot] [PATCH 0/7] sunxi: Add support for the CHIP Pro

The CHIP Pro is a SoM made by NextThing Co, and that embeds a GR8 SIP, an AXP209 PMIC, a WiFi BT chip and a 512MB SLC NAND.
Since the first Allwinner device coming whit an SLC NAND that doesn't have the shortcomings (and breakages) the MLC NAND has, we can finally enable the NAND support on a board by default.
This is the occasion to introduce a bunch of additions needed imo to be able to come up with a sane NAND support for our users.
The biggest pain point is that the BROM uses a different ECC and randomizer configuration than for the rest of the NAND. In order to lessen the number of bitflips, you also need to pad with random data the SPL image.
Since it's quite tedious to do right (and most users won't be able to figure it out) and since if it is not done right, it will eventually turn into an unusable system (which is bad UX), we think that the best solution is to generate an SPL image that already embeds all this. We'll possible have to do the same thing for the U-Boot image (at least for the random padding) on MLC NANDs.
The only drawback from that is that you need to flash it raw, instead of using the usual nand write, but it's just a different command, nothing major anyway.
In order to flash it, from a device switched in FEL, on your host: sunxi-fel spl spl/sunxi-spl.bin sunxi-fel write 0x4a000000 u-boot-dtb.bin sunxi-fel write 0x43000000 spl/sunxi-spl-with-ecc.bin sunxi-fel exe 0x4a000000
And on the board, once u-boot is running (assuming the NAND is already erased):
nand write.raw.noverify 0x43000000 0 40 nand write.raw.noverify 0x43000000 0x400000 40
nand write 0x4a000000 0x800000 0xc0000
I also encountered some weird bug in the private libgcc that prevents U-Boot from loading. Disabling CONFIG_USE_PRIVATE_LIBGCC fixes that.
Let me know what you think, Maxime
Boris Brezillon (1): mtd: nand: add support for the TC58NVG2S0H chip
Hans de Goede (1): sunxi: Enable UBI and NAND support
Maxime Ripard (5): sunxi: Sync GR8 DTS and AXP209 with the kernel tools: sunxi: Add spl image builder nand: sunxi: Add options for the SPL NAND configuration scripts: sunxi: Build an raw SPL image sunxi: Add support for the CHIP Pro
Makefile | 3 +- arch/arm/dts/Makefile | 1 +- arch/arm/dts/axp209.dtsi | 6 +- arch/arm/dts/ntc-gr8-chip-pro.dts | 266 +++++++- arch/arm/dts/ntc-gr8.dtsi | 1132 ++++++++++++++++++++++++++++++- configs/CHIP_pro_defconfig | 27 +- drivers/mtd/nand/Kconfig | 16 +- drivers/mtd/nand/nand_ids.c | 3 +- include/configs/sunxi-common.h | 26 +- scripts/Makefile.spl | 12 +- tools/.gitignore | 1 +- tools/Makefile | 1 +- tools/sunxi-spl-image-builder.c | 1113 +++++++++++++++++++++++++++++- 13 files changed, 2603 insertions(+), 4 deletions(-) create mode 100644 arch/arm/dts/ntc-gr8-chip-pro.dts create mode 100644 arch/arm/dts/ntc-gr8.dtsi create mode 100644 configs/CHIP_pro_defconfig create mode 100644 tools/sunxi-spl-image-builder.c
base-commit: d8bdfc80da39211d95f10d24e79f2e867305f71b

Those DT will be part of 4.10, sync them so we can have our own config.
Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com --- arch/arm/dts/Makefile | 1 +- arch/arm/dts/axp209.dtsi | 6 +- arch/arm/dts/ntc-gr8-chip-pro.dts | 266 +++++++- arch/arm/dts/ntc-gr8.dtsi | 1132 ++++++++++++++++++++++++++++++- 4 files changed, 1405 insertions(+), 0 deletions(-) create mode 100644 arch/arm/dts/ntc-gr8-chip-pro.dts create mode 100644 arch/arm/dts/ntc-gr8.dtsi
diff --git a/arch/arm/dts/Makefile b/arch/arm/dts/Makefile index 836a8c4d1ee2..932dbe07cf14 100644 --- a/arch/arm/dts/Makefile +++ b/arch/arm/dts/Makefile @@ -180,6 +180,7 @@ dtb-$(CONFIG_MACH_SUN4I) += \ sun4i-a10-pcduino2.dtb \ sun4i-a10-pov-protab2-ips9.dtb dtb-$(CONFIG_MACH_SUN5I) += \ + ntc-gr8-chip-pro.dtb \ sun5i-a10s-auxtek-t003.dtb \ sun5i-a10s-auxtek-t004.dtb \ sun5i-a10s-mk802.dtb \ diff --git a/arch/arm/dts/axp209.dtsi b/arch/arm/dts/axp209.dtsi index afbe89c01df5..675bb0f30825 100644 --- a/arch/arm/dts/axp209.dtsi +++ b/arch/arm/dts/axp209.dtsi @@ -53,6 +53,12 @@ interrupt-controller; #interrupt-cells = <1>;
+ axp_gpio: gpio { + compatible = "x-powers,axp209-gpio"; + gpio-controller; + #gpio-cells = <2>; + }; + regulators { /* Default work frequency for buck regulators */ x-powers,dcdc-freq = <1500>; diff --git a/arch/arm/dts/ntc-gr8-chip-pro.dts b/arch/arm/dts/ntc-gr8-chip-pro.dts new file mode 100644 index 000000000000..c4be912df481 --- /dev/null +++ b/arch/arm/dts/ntc-gr8-chip-pro.dts @@ -0,0 +1,266 @@ +/* + * Copyright 2016 Free Electrons + * Copyright 2016 NextThing Co + * + * Maxime Ripard maxime.ripard@free-electrons.com + * + * This file is dual-licensed: you can use it either under the terms + * of the GPL or the X11 license, at your option. Note that this dual + * licensing only applies to this file, and not this project as a + * whole. + * + * a) This file is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation; either version 2 of the + * License, or (at your option) any later version. + * + * This file is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * Or, alternatively, + * + * b) Permission is hereby granted, free of charge, to any person + * obtaining a copy of this software and associated documentation + * files (the "Software"), to deal in the Software without + * restriction, including without limitation the rights to use, + * copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following + * conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES + * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT + * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, + * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. + */ + +/dts-v1/; +#include "ntc-gr8.dtsi" +#include "sunxi-common-regulators.dtsi" + +#include <dt-bindings/gpio/gpio.h> +#include <dt-bindings/input/input.h> +#include <dt-bindings/interrupt-controller/irq.h> + +/ { + model = "NextThing C.H.I.P. Pro"; + compatible = "nextthing,chip-pro", "nextthing,gr8"; + + aliases { + i2c0 = &i2c0; + i2c1 = &i2c1; + serial0 = &uart1; + serial1 = &uart2; + serial2 = &uart3; + }; + + chosen { + stdout-path = "serial0:115200n8"; + }; + + leds { + compatible = "gpio-leds"; + + status { + label = "chip-pro:white:status"; + gpios = <&axp_gpio 2 GPIO_ACTIVE_HIGH>; + default-state = "on"; + }; + }; + + mmc0_pwrseq: mmc0_pwrseq { + compatible = "mmc-pwrseq-simple"; + pinctrl-names = "default"; + pinctrl-0 = <&wifi_reg_on_pin_chip_pro>; + reset-gpios = <&pio 1 10 GPIO_ACTIVE_LOW>; /* PB10 */ + }; +}; + +&codec { + status = "okay"; +}; + +&ehci0 { + status = "okay"; +}; + +&i2c0 { + pinctrl-names = "default"; + pinctrl-0 = <&i2c0_pins_a>; + status = "okay"; + + axp209: pmic@34 { + reg = <0x34>; + + /* + * The interrupt is routed through the "External Fast + * Interrupt Request" pin (ball G13 of the module) + * directly to the main interrupt controller, without + * any other controller interfering. + */ + interrupts = <0>; + }; +}; + +#include "axp209.dtsi" + +&i2c1 { + pinctrl-names = "default"; + pinctrl-0 = <&i2c1_pins_a>; + status = "disabled"; +}; + +&i2s0 { + pinctrl-names = "default"; + pinctrl-0 = <&i2s0_mclk_pins_a>, <&i2s0_data_pins_a>; + status = "disabled"; +}; + +&mmc0 { + pinctrl-names = "default"; + pinctrl-0 = <&mmc0_pins_a>; + vmmc-supply = <®_vcc3v3>; + mmc-pwrseq = <&mmc0_pwrseq>; + bus-width = <4>; + non-removable; + status = "okay"; +}; + +&nfc { + pinctrl-names = "default"; + pinctrl-0 = <&nand_pins_a &nand_cs0_pins_a &nand_rb0_pins_a>; + status = "okay"; + + nand@0 { + #address-cells = <2>; + #size-cells = <2>; + reg = <0>; + allwinner,rb = <0>; + nand-ecc-mode = "hw"; + }; +}; + +&ohci0 { + status = "okay"; +}; + +&otg_sram { + status = "okay"; +}; + +&pio { + usb0_id_pin_chip_pro: usb0-id-pin@0 { + allwinner,pins = "PG2"; + allwinner,function = "gpio_in"; + allwinner,drive = <SUN4I_PINCTRL_10_MA>; + allwinner,pull = <SUN4I_PINCTRL_NO_PULL>; + }; + + wifi_reg_on_pin_chip_pro: wifi-reg-on-pin@0 { + allwinner,pins = "PB10"; + allwinner,function = "gpio_out"; + allwinner,drive = <SUN4I_PINCTRL_10_MA>; + allwinner,pull = <SUN4I_PINCTRL_NO_PULL>; + }; +}; + +&pwm { + pinctrl-names = "default"; + pinctrl-0 = <&pwm0_pins_a>, <&pwm1_pins>; + status = "disabled"; +}; + +®_dcdc2 { + regulator-min-microvolt = <1000000>; + regulator-max-microvolt = <1400000>; + regulator-name = "vdd-cpu"; + regulator-always-on; +}; + +®_dcdc3 { + regulator-min-microvolt = <1000000>; + regulator-max-microvolt = <1300000>; + regulator-name = "vdd-sys"; + regulator-always-on; +}; + +®_ldo1 { + regulator-name = "vdd-rtc"; +}; + +®_ldo2 { + regulator-min-microvolt = <2700000>; + regulator-max-microvolt = <3300000>; + regulator-name = "avcc"; + regulator-always-on; +}; + +/* + * Both LDO3 and LDO4 are used in parallel to power up the + * WiFi/BT chip. + */ +®_ldo3 { + regulator-min-microvolt = <3300000>; + regulator-max-microvolt = <3300000>; + regulator-name = "vcc-wifi-1"; + regulator-always-on; +}; + +®_ldo4 { + regulator-min-microvolt = <3300000>; + regulator-max-microvolt = <3300000>; + regulator-name = "vcc-wifi-2"; + regulator-always-on; +}; + +&uart1 { + pinctrl-names = "default"; + pinctrl-0 = <&uart1_pins_a>, <&uart1_cts_rts_pins_a>; + status = "okay"; +}; + +&uart2 { + pinctrl-names = "default"; + pinctrl-0 = <&uart2_pins_a>, <&uart2_cts_rts_pins_a>; + status = "disabled"; +}; + +&uart3 { + pinctrl-names = "default"; + pinctrl-0 = <&uart3_pins_a>, <&uart3_cts_rts_pins_a>; + status = "okay"; +}; + +&usb_otg { + /* + * The CHIP Pro doesn't have a controllable VBUS, nor does it + * have any 5v rail on the board itself. + * + * If one wants to use it as a true OTG port, it should be + * done in the baseboard, and its DT / overlay will add it. + */ + dr_mode = "otg"; + status = "okay"; +}; + +&usb_power_supply { + status = "okay"; +}; + +&usbphy { + pinctrl-names = "default"; + pinctrl-0 = <&usb0_id_pin_chip_pro>; + usb0_id_det-gpio = <&pio 6 2 GPIO_ACTIVE_HIGH>; /* PG2 */ + usb0_vbus_power-supply = <&usb_power_supply>; + usb1_vbus-supply = <®_vcc5v0>; + status = "okay"; +}; diff --git a/arch/arm/dts/ntc-gr8.dtsi b/arch/arm/dts/ntc-gr8.dtsi new file mode 100644 index 000000000000..ea86d4d58db6 --- /dev/null +++ b/arch/arm/dts/ntc-gr8.dtsi @@ -0,0 +1,1132 @@ +/* + * Copyright 2016 Mylène Josserand + * + * Mylène Josserand mylene.josserand@free-electrons.com + * + * This file is dual-licensed: you can use it either under the terms + * of the GPL or the X11 license, at your option. Note that this dual + * licensing only applies to this file, and not this project as a + * whole. + * + * a) This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation; either version 2 of the + * License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * Or, alternatively, + * + * b) Permission is hereby granted, free of charge, to any person + * obtaining a copy of this software and associated documentation + * files (the "Software"), to deal in the Software without + * restriction, including without limitation the rights to use, + * copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following + * conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES + * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT + * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, + * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. + */ + +#include <dt-bindings/clock/sun4i-a10-pll2.h> +#include <dt-bindings/dma/sun4i-a10.h> +#include <dt-bindings/pinctrl/sun4i-a10.h> + +/ { + interrupt-parent = <&intc>; + #address-cells = <1>; + #size-cells = <1>; + + cpus { + #address-cells = <1>; + #size-cells = <0>; + + cpu0: cpu@0 { + device_type = "cpu"; + compatible = "arm,cortex-a8"; + reg = <0x0>; + clocks = <&cpu>; + }; + }; + + clocks { + #address-cells = <1>; + #size-cells = <1>; + ranges; + + /* + * This is a dummy clock, to be used as placeholder on + * other mux clocks when a specific parent clock is not + * yet implemented. It should be dropped when the driver + * is complete. + */ + dummy: dummy { + #clock-cells = <0>; + compatible = "fixed-clock"; + clock-frequency = <0>; + }; + + osc24M: clk@01c20050 { + #clock-cells = <0>; + compatible = "allwinner,sun4i-a10-osc-clk"; + reg = <0x01c20050 0x4>; + clock-frequency = <24000000>; + clock-output-names = "osc24M"; + }; + + osc3M: osc3M-clk { + compatible = "fixed-factor-clock"; + #clock-cells = <0>; + clock-div = <8>; + clock-mult = <1>; + clocks = <&osc24M>; + clock-output-names = "osc3M"; + }; + + osc32k: clk@0 { + #clock-cells = <0>; + compatible = "fixed-clock"; + clock-frequency = <32768>; + clock-output-names = "osc32k"; + }; + + pll1: clk@01c20000 { + #clock-cells = <0>; + compatible = "allwinner,sun4i-a10-pll1-clk"; + reg = <0x01c20000 0x4>; + clocks = <&osc24M>; + clock-output-names = "pll1"; + }; + + pll2: clk@01c20008 { + #clock-cells = <1>; + compatible = "allwinner,sun5i-a13-pll2-clk"; + reg = <0x01c20008 0x8>; + clocks = <&osc24M>; + clock-output-names = "pll2-1x", "pll2-2x", + "pll2-4x", "pll2-8x"; + }; + + pll3: clk@01c20010 { + #clock-cells = <0>; + compatible = "allwinner,sun4i-a10-pll3-clk"; + reg = <0x01c20010 0x4>; + clocks = <&osc3M>; + clock-output-names = "pll3"; + }; + + pll3x2: pll3x2-clk { + compatible = "allwinner,sun4i-a10-pll3-2x-clk"; + #clock-cells = <0>; + clock-div = <1>; + clock-mult = <2>; + clocks = <&pll3>; + clock-output-names = "pll3-2x"; + }; + + pll4: clk@01c20018 { + #clock-cells = <0>; + compatible = "allwinner,sun4i-a10-pll1-clk"; + reg = <0x01c20018 0x4>; + clocks = <&osc24M>; + clock-output-names = "pll4"; + }; + + pll5: clk@01c20020 { + #clock-cells = <1>; + compatible = "allwinner,sun4i-a10-pll5-clk"; + reg = <0x01c20020 0x4>; + clocks = <&osc24M>; + clock-output-names = "pll5_ddr", "pll5_other"; + }; + + pll6: clk@01c20028 { + #clock-cells = <1>; + compatible = "allwinner,sun4i-a10-pll6-clk"; + reg = <0x01c20028 0x4>; + clocks = <&osc24M>; + clock-output-names = "pll6_sata", "pll6_other", "pll6"; + }; + + pll7: clk@01c20030 { + #clock-cells = <0>; + compatible = "allwinner,sun4i-a10-pll3-clk"; + reg = <0x01c20030 0x4>; + clocks = <&osc3M>; + clock-output-names = "pll7"; + }; + + pll7x2: pll7x2-clk { + compatible = "allwinner,sun4i-a10-pll3-2x-clk"; + #clock-cells = <0>; + clock-div = <1>; + clock-mult = <2>; + clocks = <&pll7>; + clock-output-names = "pll7-2x"; + }; + + /* dummy is 200M */ + cpu: cpu@01c20054 { + #clock-cells = <0>; + compatible = "allwinner,sun4i-a10-cpu-clk"; + reg = <0x01c20054 0x4>; + clocks = <&osc32k>, <&osc24M>, <&pll1>, <&dummy>; + clock-output-names = "cpu"; + }; + + axi: axi@01c20054 { + #clock-cells = <0>; + compatible = "allwinner,sun4i-a10-axi-clk"; + reg = <0x01c20054 0x4>; + clocks = <&cpu>; + clock-output-names = "axi"; + }; + + ahb: ahb@01c20054 { + #clock-cells = <0>; + compatible = "allwinner,sun5i-a13-ahb-clk"; + reg = <0x01c20054 0x4>; + clocks = <&axi>, <&cpu>, <&pll6 1>; + clock-output-names = "ahb"; + /* + * Use PLL6 as parent, instead of CPU/AXI + * which has rate changes due to cpufreq + */ + assigned-clocks = <&ahb>; + assigned-clock-parents = <&pll6 1>; + }; + + apb0: apb0@01c20054 { + #clock-cells = <0>; + compatible = "allwinner,sun4i-a10-apb0-clk"; + reg = <0x01c20054 0x4>; + clocks = <&ahb>; + clock-output-names = "apb0"; + }; + + apb1: clk@01c20058 { + #clock-cells = <0>; + compatible = "allwinner,sun4i-a10-apb1-clk"; + reg = <0x01c20058 0x4>; + clocks = <&osc24M>, <&pll6 1>, <&osc32k>; + clock-output-names = "apb1"; + }; + + axi_gates: clk@01c2005c { + #clock-cells = <1>; + compatible = "allwinner,sun4i-a10-gates-clk"; + reg = <0x01c2005c 0x4>; + clocks = <&axi>; + clock-indices = <0>; + clock-output-names = "axi_dram"; + }; + + ahb_gates: clk@01c20060 { + #clock-cells = <1>; + compatible = "allwinner,sun5i-a13-ahb-gates-clk"; + reg = <0x01c20060 0x8>; + clocks = <&ahb>; + clock-indices = <0>, <1>, + <2>, <5>, <6>, + <7>, <8>, <9>, + <10>, <13>, + <14>, <17>, <20>, + <21>, <22>, + <28>, <32>, <34>, + <36>, <40>, <44>, + <46>, <51>, + <52>; + clock-output-names = "ahb_usbotg", "ahb_ehci", + "ahb_ohci", "ahb_ss", "ahb_dma", + "ahb_bist", "ahb_mmc0", "ahb_mmc1", + "ahb_mmc2", "ahb_nand", + "ahb_sdram", "ahb_emac", "ahb_spi0", + "ahb_spi1", "ahb_spi2", + "ahb_hstimer", "ahb_ve", "ahb_tve", + "ahb_lcd", "ahb_csi", "ahb_de_be", + "ahb_de_fe", "ahb_iep", + "ahb_mali400"; + }; + + apb0_gates: clk@01c20068 { + #clock-cells = <1>; + compatible = "allwinner,sun4i-a10-gates-clk"; + reg = <0x01c20068 0x4>; + clocks = <&apb0>; + clock-indices = <0>, <3>, + <5>, <6>; + clock-output-names = "apb0_codec", "apb0_i2s0", + "apb0_pio", "apb0_ir"; + }; + + apb1_gates: clk@01c2006c { + #clock-cells = <1>; + compatible = "allwinner,sun4i-a10-gates-clk"; + reg = <0x01c2006c 0x4>; + clocks = <&apb1>; + clock-indices = <0>, <1>, + <2>, <17>, + <18>, <19>; + clock-output-names = "apb1_i2c0", "apb1_i2c1", + "apb1_i2c2", "apb1_uart1", + "apb1_uart2", "apb1_uart3"; + }; + + nand_clk: clk@01c20080 { + #clock-cells = <0>; + compatible = "allwinner,sun4i-a10-mod0-clk"; + reg = <0x01c20080 0x4>; + clocks = <&osc24M>, <&pll6 1>, <&pll5 1>; + clock-output-names = "nand"; + }; + + ms_clk: clk@01c20084 { + #clock-cells = <0>; + compatible = "allwinner,sun4i-a10-mod0-clk"; + reg = <0x01c20084 0x4>; + clocks = <&osc24M>, <&pll6 1>, <&pll5 1>; + clock-output-names = "ms"; + }; + + mmc0_clk: clk@01c20088 { + #clock-cells = <1>; + compatible = "allwinner,sun4i-a10-mmc-clk"; + reg = <0x01c20088 0x4>; + clocks = <&osc24M>, <&pll6 1>, <&pll5 1>; + clock-output-names = "mmc0", + "mmc0_output", + "mmc0_sample"; + }; + + mmc1_clk: clk@01c2008c { + #clock-cells = <1>; + compatible = "allwinner,sun4i-a10-mmc-clk"; + reg = <0x01c2008c 0x4>; + clocks = <&osc24M>, <&pll6 1>, <&pll5 1>; + clock-output-names = "mmc1", + "mmc1_output", + "mmc1_sample"; + }; + + mmc2_clk: clk@01c20090 { + #clock-cells = <1>; + compatible = "allwinner,sun4i-a10-mmc-clk"; + reg = <0x01c20090 0x4>; + clocks = <&osc24M>, <&pll6 1>, <&pll5 1>; + clock-output-names = "mmc2", + "mmc2_output", + "mmc2_sample"; + }; + + ts_clk: clk@01c20098 { + #clock-cells = <0>; + compatible = "allwinner,sun4i-a10-mod0-clk"; + reg = <0x01c20098 0x4>; + clocks = <&osc24M>, <&pll6 1>, <&pll5 1>; + clock-output-names = "ts"; + }; + + ss_clk: clk@01c2009c { + #clock-cells = <0>; + compatible = "allwinner,sun4i-a10-mod0-clk"; + reg = <0x01c2009c 0x4>; + clocks = <&osc24M>, <&pll6 1>, <&pll5 1>; + clock-output-names = "ss"; + }; + + spi0_clk: clk@01c200a0 { + #clock-cells = <0>; + compatible = "allwinner,sun4i-a10-mod0-clk"; + reg = <0x01c200a0 0x4>; + clocks = <&osc24M>, <&pll6 1>, <&pll5 1>; + clock-output-names = "spi0"; + }; + + spi1_clk: clk@01c200a4 { + #clock-cells = <0>; + compatible = "allwinner,sun4i-a10-mod0-clk"; + reg = <0x01c200a4 0x4>; + clocks = <&osc24M>, <&pll6 1>, <&pll5 1>; + clock-output-names = "spi1"; + }; + + spi2_clk: clk@01c200a8 { + #clock-cells = <0>; + compatible = "allwinner,sun4i-a10-mod0-clk"; + reg = <0x01c200a8 0x4>; + clocks = <&osc24M>, <&pll6 1>, <&pll5 1>; + clock-output-names = "spi2"; + }; + + ir0_clk: clk@01c200b0 { + #clock-cells = <0>; + compatible = "allwinner,sun4i-a10-mod0-clk"; + reg = <0x01c200b0 0x4>; + clocks = <&osc24M>, <&pll6 1>, <&pll5 1>; + clock-output-names = "ir0"; + }; + + i2s0_clk: clk@01c200b8 { + #clock-cells = <0>; + compatible = "allwinner,sun4i-a10-mod1-clk"; + reg = <0x01c200b8 0x4>; + clocks = <&pll2 SUN4I_A10_PLL2_8X>, + <&pll2 SUN4I_A10_PLL2_4X>, + <&pll2 SUN4I_A10_PLL2_2X>, + <&pll2 SUN4I_A10_PLL2_1X>; + clock-output-names = "i2s0"; + }; + + spdif_clk: clk@01c200c0 { + #clock-cells = <0>; + compatible = "allwinner,sun4i-a10-mod1-clk"; + reg = <0x01c200c0 0x4>; + clocks = <&pll2 SUN4I_A10_PLL2_8X>, + <&pll2 SUN4I_A10_PLL2_4X>, + <&pll2 SUN4I_A10_PLL2_2X>, + <&pll2 SUN4I_A10_PLL2_1X>; + clock-output-names = "spdif"; + }; + + usb_clk: clk@01c200cc { + #clock-cells = <1>; + #reset-cells = <1>; + compatible = "allwinner,sun5i-a13-usb-clk"; + reg = <0x01c200cc 0x4>; + clocks = <&pll6 1>; + clock-output-names = "usb_ohci0", "usb_phy"; + }; + + dram_gates: clk@01c20100 { + #clock-cells = <1>; + compatible = "nextthing,gr8-dram-gates-clk", + "allwinner,sun4i-a10-gates-clk"; + reg = <0x01c20100 0x4>; + clocks = <&pll5 0>; + clock-indices = <0>, + <1>, + <25>, + <26>, + <29>, + <31>; + clock-output-names = "dram_ve", + "dram_csi", + "dram_de_fe", + "dram_de_be", + "dram_ace", + "dram_iep"; + }; + + de_be_clk: clk@01c20104 { + #clock-cells = <0>; + #reset-cells = <0>; + compatible = "allwinner,sun4i-a10-display-clk"; + reg = <0x01c20104 0x4>; + clocks = <&pll3>, <&pll7>, <&pll5 1>; + clock-output-names = "de-be"; + }; + + de_fe_clk: clk@01c2010c { + #clock-cells = <0>; + #reset-cells = <0>; + compatible = "allwinner,sun4i-a10-display-clk"; + reg = <0x01c2010c 0x4>; + clocks = <&pll3>, <&pll7>, <&pll5 1>; + clock-output-names = "de-fe"; + }; + + tcon_ch0_clk: clk@01c20118 { + #clock-cells = <0>; + #reset-cells = <1>; + compatible = "allwinner,sun4i-a10-tcon-ch0-clk"; + reg = <0x01c20118 0x4>; + clocks = <&pll3>, <&pll7>, <&pll3x2>, <&pll7x2>; + clock-output-names = "tcon-ch0-sclk"; + }; + + tcon_ch1_clk: clk@01c2012c { + #clock-cells = <0>; + compatible = "allwinner,sun4i-a10-tcon-ch1-clk"; + reg = <0x01c2012c 0x4>; + clocks = <&pll3>, <&pll7>, <&pll3x2>, <&pll7x2>; + clock-output-names = "tcon-ch1-sclk"; + }; + + codec_clk: clk@01c20140 { + #clock-cells = <0>; + compatible = "allwinner,sun4i-a10-codec-clk"; + reg = <0x01c20140 0x4>; + clocks = <&pll2 SUN4I_A10_PLL2_1X>; + clock-output-names = "codec"; + }; + + mbus_clk: clk@01c2015c { + #clock-cells = <0>; + compatible = "allwinner,sun5i-a13-mbus-clk"; + reg = <0x01c2015c 0x4>; + clocks = <&osc24M>, <&pll6 1>, <&pll5 1>; + clock-output-names = "mbus"; + }; + }; + + display-engine { + compatible = "allwinner,sun5i-a13-display-engine"; + allwinner,pipelines = <&fe0>; + }; + + soc@01c00000 { + compatible = "simple-bus"; + #address-cells = <1>; + #size-cells = <1>; + ranges; + + sram-controller@01c00000 { + compatible = "allwinner,sun4i-a10-sram-controller"; + reg = <0x01c00000 0x30>; + #address-cells = <1>; + #size-cells = <1>; + ranges; + + sram_a: sram@00000000 { + compatible = "mmio-sram"; + reg = <0x00000000 0xc000>; + #address-cells = <1>; + #size-cells = <1>; + ranges = <0 0x00000000 0xc000>; + }; + + sram_d: sram@00010000 { + compatible = "mmio-sram"; + reg = <0x00010000 0x1000>; + #address-cells = <1>; + #size-cells = <1>; + ranges = <0 0x00010000 0x1000>; + + otg_sram: sram-section@0000 { + compatible = "allwinner,sun4i-a10-sram-d"; + reg = <0x0000 0x1000>; + status = "disabled"; + }; + }; + }; + + dma: dma-controller@01c02000 { + compatible = "allwinner,sun4i-a10-dma"; + reg = <0x01c02000 0x1000>; + interrupts = <27>; + clocks = <&ahb_gates 6>; + #dma-cells = <2>; + }; + + nfc: nand@01c03000 { + compatible = "allwinner,sun4i-a10-nand"; + reg = <0x01c03000 0x1000>; + interrupts = <37>; + clocks = <&ahb_gates 13>, <&nand_clk>; + clock-names = "ahb", "mod"; + dmas = <&dma SUN4I_DMA_DEDICATED 3>; + dma-names = "rxtx"; + status = "disabled"; + #address-cells = <1>; + #size-cells = <0>; + }; + + spi0: spi@01c05000 { + compatible = "allwinner,sun4i-a10-spi"; + reg = <0x01c05000 0x1000>; + interrupts = <10>; + clocks = <&ahb_gates 20>, <&spi0_clk>; + clock-names = "ahb", "mod"; + dmas = <&dma SUN4I_DMA_DEDICATED 27>, + <&dma SUN4I_DMA_DEDICATED 26>; + dma-names = "rx", "tx"; + status = "disabled"; + #address-cells = <1>; + #size-cells = <0>; + }; + + spi1: spi@01c06000 { + compatible = "allwinner,sun4i-a10-spi"; + reg = <0x01c06000 0x1000>; + interrupts = <11>; + clocks = <&ahb_gates 21>, <&spi1_clk>; + clock-names = "ahb", "mod"; + dmas = <&dma SUN4I_DMA_DEDICATED 9>, + <&dma SUN4I_DMA_DEDICATED 8>; + dma-names = "rx", "tx"; + status = "disabled"; + #address-cells = <1>; + #size-cells = <0>; + }; + + tve0: tv-encoder@01c0a000 { + compatible = "allwinner,sun4i-a10-tv-encoder"; + reg = <0x01c0a000 0x1000>; + clocks = <&ahb_gates 34>; + resets = <&tcon_ch0_clk 0>; + status = "disabled"; + + port { + #address-cells = <1>; + #size-cells = <0>; + + tve0_in_tcon0: endpoint@0 { + reg = <0>; + remote-endpoint = <&tcon0_out_tve0>; + }; + }; + }; + + tcon0: lcd-controller@01c0c000 { + compatible = "allwinner,sun5i-a13-tcon"; + reg = <0x01c0c000 0x1000>; + interrupts = <44>; + resets = <&tcon_ch0_clk 1>; + reset-names = "lcd"; + clocks = <&ahb_gates 36>, + <&tcon_ch0_clk>, + <&tcon_ch1_clk>; + clock-names = "ahb", + "tcon-ch0", + "tcon-ch1"; + clock-output-names = "tcon-pixel-clock"; + status = "disabled"; + + ports { + #address-cells = <1>; + #size-cells = <0>; + + tcon0_in: port@0 { + #address-cells = <1>; + #size-cells = <0>; + reg = <0>; + + tcon0_in_be0: endpoint@0 { + reg = <0>; + remote-endpoint = <&be0_out_tcon0>; + }; + }; + + tcon0_out: port@1 { + #address-cells = <1>; + #size-cells = <0>; + reg = <1>; + + tcon0_out_tve0: endpoint@1 { + reg = <1>; + remote-endpoint = <&tve0_in_tcon0>; + }; + }; + }; + }; + + mmc0: mmc@01c0f000 { + compatible = "allwinner,sun5i-a13-mmc"; + reg = <0x01c0f000 0x1000>; + clocks = <&ahb_gates 8>, + <&mmc0_clk 0>, + <&mmc0_clk 1>, + <&mmc0_clk 2>; + clock-names = "ahb", + "mmc", + "output", + "sample"; + interrupts = <32>; + status = "disabled"; + #address-cells = <1>; + #size-cells = <0>; + }; + + mmc1: mmc@01c10000 { + compatible = "allwinner,sun5i-a13-mmc"; + reg = <0x01c10000 0x1000>; + clocks = <&ahb_gates 9>, + <&mmc1_clk 0>, + <&mmc1_clk 1>, + <&mmc1_clk 2>; + clock-names = "ahb", + "mmc", + "output", + "sample"; + interrupts = <33>; + status = "disabled"; + #address-cells = <1>; + #size-cells = <0>; + }; + + mmc2: mmc@01c11000 { + compatible = "allwinner,sun5i-a13-mmc"; + reg = <0x01c11000 0x1000>; + clocks = <&ahb_gates 10>, + <&mmc2_clk 0>, + <&mmc2_clk 1>, + <&mmc2_clk 2>; + clock-names = "ahb", + "mmc", + "output", + "sample"; + interrupts = <34>; + status = "disabled"; + #address-cells = <1>; + #size-cells = <0>; + }; + + usb_otg: usb@01c13000 { + compatible = "allwinner,sun4i-a10-musb"; + reg = <0x01c13000 0x0400>; + clocks = <&ahb_gates 0>; + interrupts = <38>; + interrupt-names = "mc"; + phys = <&usbphy 0>; + phy-names = "usb"; + extcon = <&usbphy 0>; + allwinner,sram = <&otg_sram 1>; + status = "disabled"; + + dr_mode = "otg"; + }; + + usbphy: phy@01c13400 { + #phy-cells = <1>; + compatible = "allwinner,sun5i-a13-usb-phy"; + reg = <0x01c13400 0x10 0x01c14800 0x4>; + reg-names = "phy_ctrl", "pmu1"; + clocks = <&usb_clk 8>; + clock-names = "usb_phy"; + resets = <&usb_clk 0>, <&usb_clk 1>; + reset-names = "usb0_reset", "usb1_reset"; + status = "disabled"; + }; + + ehci0: usb@01c14000 { + compatible = "allwinner,sun5i-a13-ehci", "generic-ehci"; + reg = <0x01c14000 0x100>; + interrupts = <39>; + clocks = <&ahb_gates 1>; + phys = <&usbphy 1>; + phy-names = "usb"; + status = "disabled"; + }; + + ohci0: usb@01c14400 { + compatible = "allwinner,sun5i-a13-ohci", "generic-ohci"; + reg = <0x01c14400 0x100>; + interrupts = <40>; + clocks = <&usb_clk 6>, <&ahb_gates 2>; + phys = <&usbphy 1>; + phy-names = "usb"; + status = "disabled"; + }; + + spi2: spi@01c17000 { + compatible = "allwinner,sun4i-a10-spi"; + reg = <0x01c17000 0x1000>; + interrupts = <12>; + clocks = <&ahb_gates 22>, <&spi2_clk>; + clock-names = "ahb", "mod"; + dmas = <&dma SUN4I_DMA_DEDICATED 29>, + <&dma SUN4I_DMA_DEDICATED 28>; + dma-names = "rx", "tx"; + status = "disabled"; + #address-cells = <1>; + #size-cells = <0>; + }; + + intc: interrupt-controller@01c20400 { + compatible = "allwinner,sun4i-a10-ic"; + reg = <0x01c20400 0x400>; + interrupt-controller; + #interrupt-cells = <1>; + }; + + pio: pinctrl@01c20800 { + compatible = "nextthing,gr8-pinctrl"; + reg = <0x01c20800 0x400>; + interrupts = <28>; + clocks = <&apb0_gates 5>; + gpio-controller; + interrupt-controller; + #interrupt-cells = <3>; + #gpio-cells = <3>; + + i2c0_pins_a: i2c0@0 { + allwinner,pins = "PB0", "PB1"; + allwinner,function = "i2c0"; + allwinner,drive = <SUN4I_PINCTRL_10_MA>; + allwinner,pull = <SUN4I_PINCTRL_NO_PULL>; + }; + + i2c1_pins_a: i2c1@0 { + allwinner,pins = "PB15", "PB16"; + allwinner,function = "i2c1"; + allwinner,drive = <SUN4I_PINCTRL_10_MA>; + allwinner,pull = <SUN4I_PINCTRL_NO_PULL>; + }; + + i2c2_pins_a: i2c2@0 { + allwinner,pins = "PB17", "PB18"; + allwinner,function = "i2c2"; + allwinner,drive = <SUN4I_PINCTRL_10_MA>; + allwinner,pull = <SUN4I_PINCTRL_NO_PULL>; + }; + + i2s0_data_pins_a: i2s0-data@0 { + allwinner,pins = "PB6", "PB7", "PB8", "PB9"; + allwinner,function = "i2s0"; + allwinner,drive = <SUN4I_PINCTRL_10_MA>; + allwinner,pull = <SUN4I_PINCTRL_NO_PULL>; + }; + + i2s0_mclk_pins_a: i2s0-mclk@0 { + allwinner,pins = "PB5"; + allwinner,function = "i2s0"; + allwinner,drive = <SUN4I_PINCTRL_10_MA>; + allwinner,pull = <SUN4I_PINCTRL_NO_PULL>; + }; + + ir0_rx_pins_a: ir0@0 { + allwinner,pins = "PB4"; + allwinner,function = "ir0"; + allwinner,drive = <SUN4I_PINCTRL_10_MA>; + allwinner,pull = <SUN4I_PINCTRL_NO_PULL>; + }; + + lcd_rgb666_pins: lcd-rgb666@0 { + allwinner,pins = "PD2", "PD3", "PD4", "PD5", "PD6", "PD7", + "PD10", "PD11", "PD12", "PD13", "PD14", "PD15", + "PD18", "PD19", "PD20", "PD21", "PD22", "PD23", + "PD24", "PD25", "PD26", "PD27"; + allwinner,function = "lcd0"; + allwinner,drive = <SUN4I_PINCTRL_10_MA>; + allwinner,pull = <SUN4I_PINCTRL_NO_PULL>; + }; + + mmc0_pins_a: mmc0@0 { + allwinner,pins = "PF0", "PF1", "PF2", "PF3", + "PF4", "PF5"; + allwinner,function = "mmc0"; + allwinner,drive = <SUN4I_PINCTRL_30_MA>; + allwinner,pull = <SUN4I_PINCTRL_NO_PULL>; + }; + + nand_pins_a: nand-base0@0 { + allwinner,pins = "PC0", "PC1", "PC2", + "PC5", "PC8", "PC9", "PC10", + "PC11", "PC12", "PC13", "PC14", + "PC15"; + allwinner,function = "nand0"; + allwinner,drive = <SUN4I_PINCTRL_10_MA>; + allwinner,pull = <SUN4I_PINCTRL_NO_PULL>; + }; + + nand_cs0_pins_a: nand-cs@0 { + allwinner,pins = "PC4"; + allwinner,function = "nand0"; + allwinner,drive = <SUN4I_PINCTRL_10_MA>; + allwinner,pull = <SUN4I_PINCTRL_NO_PULL>; + }; + + nand_rb0_pins_a: nand-rb@0 { + allwinner,pins = "PC6"; + allwinner,function = "nand0"; + allwinner,drive = <SUN4I_PINCTRL_10_MA>; + allwinner,pull = <SUN4I_PINCTRL_NO_PULL>; + }; + + pwm0_pins_a: pwm0@0 { + allwinner,pins = "PB2"; + allwinner,function = "pwm0"; + allwinner,drive = <SUN4I_PINCTRL_10_MA>; + allwinner,pull = <SUN4I_PINCTRL_NO_PULL>; + }; + + pwm1_pins: pwm1 { + allwinner,pins = "PG13"; + allwinner,function = "pwm1"; + allwinner,drive = <SUN4I_PINCTRL_10_MA>; + allwinner,pull = <SUN4I_PINCTRL_NO_PULL>; + }; + + spdif_tx_pins_a: spdif@0 { + allwinner,pins = "PB10"; + allwinner,function = "spdif"; + allwinner,drive = <SUN4I_PINCTRL_10_MA>; + allwinner,pull = <SUN4I_PINCTRL_PULL_UP>; + }; + + uart1_pins_a: uart1@1 { + allwinner,pins = "PG3", "PG4"; + allwinner,function = "uart1"; + allwinner,drive = <SUN4I_PINCTRL_10_MA>; + allwinner,pull = <SUN4I_PINCTRL_NO_PULL>; + }; + + uart1_cts_rts_pins_a: uart1-cts-rts@0 { + allwinner,pins = "PG5", "PG6"; + allwinner,function = "uart1"; + allwinner,drive = <SUN4I_PINCTRL_10_MA>; + allwinner,pull = <SUN4I_PINCTRL_NO_PULL>; + }; + + uart2_pins_a: uart2@1 { + allwinner,pins = "PD2", "PD3"; + allwinner,function = "uart2"; + allwinner,drive = <SUN4I_PINCTRL_10_MA>; + allwinner,pull = <SUN4I_PINCTRL_NO_PULL>; + }; + + uart2_cts_rts_pins_a: uart2-cts-rts@0 { + allwinner,pins = "PD4", "PD5"; + allwinner,function = "uart2"; + allwinner,drive = <SUN4I_PINCTRL_10_MA>; + allwinner,pull = <SUN4I_PINCTRL_NO_PULL>; + }; + + uart3_pins_a: uart3@1 { + allwinner,pins = "PG9", "PG10"; + allwinner,function = "uart3"; + allwinner,drive = <SUN4I_PINCTRL_10_MA>; + allwinner,pull = <SUN4I_PINCTRL_NO_PULL>; + }; + + uart3_cts_rts_pins_a: uart3-cts-rts@0 { + allwinner,pins = "PG11", "PG12"; + allwinner,function = "uart3"; + allwinner,drive = <SUN4I_PINCTRL_10_MA>; + allwinner,pull = <SUN4I_PINCTRL_NO_PULL>; + }; + }; + + pwm: pwm@01c20e00 { + compatible = "allwinner,sun5i-a10s-pwm"; + reg = <0x01c20e00 0xc>; + clocks = <&osc24M>; + #pwm-cells = <3>; + status = "disabled"; + }; + + timer@01c20c00 { + compatible = "allwinner,sun4i-a10-timer"; + reg = <0x01c20c00 0x90>; + interrupts = <22>; + clocks = <&osc24M>; + }; + + wdt: watchdog@01c20c90 { + compatible = "allwinner,sun4i-a10-wdt"; + reg = <0x01c20c90 0x10>; + }; + + spdif: spdif@01c21000 { + #sound-dai-cells = <0>; + compatible = "allwinner,sun4i-a10-spdif"; + reg = <0x01c21000 0x400>; + interrupts = <13>; + clocks = <&apb0_gates 1>, <&spdif_clk>; + clock-names = "apb", "spdif"; + dmas = <&dma SUN4I_DMA_NORMAL 2>, + <&dma SUN4I_DMA_NORMAL 2>; + dma-names = "rx", "tx"; + status = "disabled"; + }; + + ir0: ir@01c21800 { + compatible = "allwinner,sun4i-a10-ir"; + clocks = <&apb0_gates 6>, <&ir0_clk>; + clock-names = "apb", "ir"; + interrupts = <5>; + reg = <0x01c21800 0x40>; + status = "disabled"; + }; + + i2s0: i2s@01c22400 { + #sound-dai-cells = <0>; + compatible = "allwinner,sun4i-a10-i2s"; + reg = <0x01c22400 0x400>; + interrupts = <16>; + clocks = <&apb0_gates 3>, <&i2s0_clk>; + clock-names = "apb", "mod"; + dmas = <&dma SUN4I_DMA_NORMAL 3>, + <&dma SUN4I_DMA_NORMAL 3>; + dma-names = "rx", "tx"; + status = "disabled"; + }; + + lradc: lradc@01c22800 { + compatible = "allwinner,sun4i-a10-lradc-keys"; + reg = <0x01c22800 0x100>; + interrupts = <31>; + status = "disabled"; + }; + + codec: codec@01c22c00 { + #sound-dai-cells = <0>; + compatible = "allwinner,sun4i-a10-codec"; + reg = <0x01c22c00 0x40>; + interrupts = <30>; + clocks = <&apb0_gates 0>, <&codec_clk>; + clock-names = "apb", "codec"; + dmas = <&dma SUN4I_DMA_NORMAL 19>, + <&dma SUN4I_DMA_NORMAL 19>; + dma-names = "rx", "tx"; + status = "disabled"; + }; + + rtp: rtp@01c25000 { + compatible = "allwinner,sun5i-a13-ts"; + reg = <0x01c25000 0x100>; + interrupts = <29>; + #thermal-sensor-cells = <0>; + }; + + uart1: serial@01c28400 { + compatible = "snps,dw-apb-uart"; + reg = <0x01c28400 0x400>; + interrupts = <2>; + reg-shift = <2>; + reg-io-width = <4>; + clocks = <&apb1_gates 17>; + status = "disabled"; + }; + + uart2: serial@01c28800 { + compatible = "snps,dw-apb-uart"; + reg = <0x01c28800 0x400>; + interrupts = <3>; + reg-shift = <2>; + reg-io-width = <4>; + clocks = <&apb1_gates 18>; + status = "disabled"; + }; + + uart3: serial@01c28c00 { + compatible = "snps,dw-apb-uart"; + reg = <0x01c28c00 0x400>; + interrupts = <4>; + reg-shift = <2>; + reg-io-width = <4>; + clocks = <&apb1_gates 19>; + status = "disabled"; + }; + + i2c0: i2c@01c2ac00 { + compatible = "allwinner,sun4i-a10-i2c"; + reg = <0x01c2ac00 0x400>; + interrupts = <7>; + clocks = <&apb1_gates 0>; + status = "disabled"; + #address-cells = <1>; + #size-cells = <0>; + }; + + i2c1: i2c@01c2b000 { + compatible = "allwinner,sun4i-a10-i2c"; + reg = <0x01c2b000 0x400>; + interrupts = <8>; + clocks = <&apb1_gates 1>; + status = "disabled"; + #address-cells = <1>; + #size-cells = <0>; + }; + + i2c2: i2c@01c2b400 { + compatible = "allwinner,sun4i-a10-i2c"; + reg = <0x01c2b400 0x400>; + interrupts = <9>; + clocks = <&apb1_gates 2>; + status = "disabled"; + #address-cells = <1>; + #size-cells = <0>; + }; + + timer@01c60000 { + compatible = "allwinner,sun5i-a13-hstimer"; + reg = <0x01c60000 0x1000>; + interrupts = <82>, <83>; + clocks = <&ahb_gates 28>; + }; + + fe0: display-frontend@01e00000 { + compatible = "allwinner,sun5i-a13-display-frontend"; + reg = <0x01e00000 0x20000>; + interrupts = <47>; + clocks = <&ahb_gates 46>, <&de_fe_clk>, + <&dram_gates 25>; + clock-names = "ahb", "mod", + "ram"; + resets = <&de_fe_clk>; + status = "disabled"; + + ports { + #address-cells = <1>; + #size-cells = <0>; + + fe0_out: port@1 { + #address-cells = <1>; + #size-cells = <0>; + reg = <1>; + + fe0_out_be0: endpoint@0 { + reg = <0>; + remote-endpoint = <&be0_in_fe0>; + }; + }; + }; + }; + + be0: display-backend@01e60000 { + compatible = "allwinner,sun5i-a13-display-backend"; + reg = <0x01e60000 0x10000>; + clocks = <&ahb_gates 44>, <&de_be_clk>, + <&dram_gates 26>; + clock-names = "ahb", "mod", + "ram"; + resets = <&de_be_clk>; + status = "disabled"; + + assigned-clocks = <&de_be_clk>; + assigned-clock-rates = <300000000>; + + ports { + #address-cells = <1>; + #size-cells = <0>; + + be0_in: port@0 { + #address-cells = <1>; + #size-cells = <0>; + reg = <0>; + + be0_in_fe0: endpoint@0 { + reg = <0>; + remote-endpoint = <&fe0_out_be0>; + }; + }; + + be0_out: port@1 { + #address-cells = <1>; + #size-cells = <0>; + reg = <1>; + + be0_out_tcon0: endpoint@0 { + reg = <0>; + remote-endpoint = <&tcon0_in_be0>; + }; + }; + }; + }; + }; +};

Hi,
On 08-11-16 17:21, Maxime Ripard wrote:
Those DT will be part of 4.10, sync them so we can have our own config.
Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com
Looks good to me:
Reviewed-by: Hans de Goede hdegoede@redhat.com
Regards,
Hans
arch/arm/dts/Makefile | 1 +- arch/arm/dts/axp209.dtsi | 6 +- arch/arm/dts/ntc-gr8-chip-pro.dts | 266 +++++++- arch/arm/dts/ntc-gr8.dtsi | 1132 ++++++++++++++++++++++++++++++- 4 files changed, 1405 insertions(+), 0 deletions(-) create mode 100644 arch/arm/dts/ntc-gr8-chip-pro.dts create mode 100644 arch/arm/dts/ntc-gr8.dtsi
diff --git a/arch/arm/dts/Makefile b/arch/arm/dts/Makefile index 836a8c4d1ee2..932dbe07cf14 100644 --- a/arch/arm/dts/Makefile +++ b/arch/arm/dts/Makefile @@ -180,6 +180,7 @@ dtb-$(CONFIG_MACH_SUN4I) += \ sun4i-a10-pcduino2.dtb \ sun4i-a10-pov-protab2-ips9.dtb dtb-$(CONFIG_MACH_SUN5I) += \
- ntc-gr8-chip-pro.dtb \ sun5i-a10s-auxtek-t003.dtb \ sun5i-a10s-auxtek-t004.dtb \ sun5i-a10s-mk802.dtb \
diff --git a/arch/arm/dts/axp209.dtsi b/arch/arm/dts/axp209.dtsi index afbe89c01df5..675bb0f30825 100644 --- a/arch/arm/dts/axp209.dtsi +++ b/arch/arm/dts/axp209.dtsi @@ -53,6 +53,12 @@ interrupt-controller; #interrupt-cells = <1>;
- axp_gpio: gpio {
compatible = "x-powers,axp209-gpio";
gpio-controller;
#gpio-cells = <2>;
- };
- regulators { /* Default work frequency for buck regulators */ x-powers,dcdc-freq = <1500>;
diff --git a/arch/arm/dts/ntc-gr8-chip-pro.dts b/arch/arm/dts/ntc-gr8-chip-pro.dts new file mode 100644 index 000000000000..c4be912df481 --- /dev/null +++ b/arch/arm/dts/ntc-gr8-chip-pro.dts @@ -0,0 +1,266 @@ +/*
- Copyright 2016 Free Electrons
- Copyright 2016 NextThing Co
- Maxime Ripard maxime.ripard@free-electrons.com
- This file is dual-licensed: you can use it either under the terms
- of the GPL or the X11 license, at your option. Note that this dual
- licensing only applies to this file, and not this project as a
- whole.
- a) This file is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This file is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
- Or, alternatively,
- b) Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
- */
+/dts-v1/; +#include "ntc-gr8.dtsi" +#include "sunxi-common-regulators.dtsi"
+#include <dt-bindings/gpio/gpio.h> +#include <dt-bindings/input/input.h> +#include <dt-bindings/interrupt-controller/irq.h>
+/ {
- model = "NextThing C.H.I.P. Pro";
- compatible = "nextthing,chip-pro", "nextthing,gr8";
- aliases {
i2c0 = &i2c0;
i2c1 = &i2c1;
serial0 = &uart1;
serial1 = &uart2;
serial2 = &uart3;
- };
- chosen {
stdout-path = "serial0:115200n8";
- };
- leds {
compatible = "gpio-leds";
status {
label = "chip-pro:white:status";
gpios = <&axp_gpio 2 GPIO_ACTIVE_HIGH>;
default-state = "on";
};
- };
- mmc0_pwrseq: mmc0_pwrseq {
compatible = "mmc-pwrseq-simple";
pinctrl-names = "default";
pinctrl-0 = <&wifi_reg_on_pin_chip_pro>;
reset-gpios = <&pio 1 10 GPIO_ACTIVE_LOW>; /* PB10 */
- };
+};
+&codec {
- status = "okay";
+};
+&ehci0 {
- status = "okay";
+};
+&i2c0 {
- pinctrl-names = "default";
- pinctrl-0 = <&i2c0_pins_a>;
- status = "okay";
- axp209: pmic@34 {
reg = <0x34>;
/*
* The interrupt is routed through the "External Fast
* Interrupt Request" pin (ball G13 of the module)
* directly to the main interrupt controller, without
* any other controller interfering.
*/
interrupts = <0>;
- };
+};
+#include "axp209.dtsi"
+&i2c1 {
- pinctrl-names = "default";
- pinctrl-0 = <&i2c1_pins_a>;
- status = "disabled";
+};
+&i2s0 {
- pinctrl-names = "default";
- pinctrl-0 = <&i2s0_mclk_pins_a>, <&i2s0_data_pins_a>;
- status = "disabled";
+};
+&mmc0 {
- pinctrl-names = "default";
- pinctrl-0 = <&mmc0_pins_a>;
- vmmc-supply = <®_vcc3v3>;
- mmc-pwrseq = <&mmc0_pwrseq>;
- bus-width = <4>;
- non-removable;
- status = "okay";
+};
+&nfc {
- pinctrl-names = "default";
- pinctrl-0 = <&nand_pins_a &nand_cs0_pins_a &nand_rb0_pins_a>;
- status = "okay";
- nand@0 {
#address-cells = <2>;
#size-cells = <2>;
reg = <0>;
allwinner,rb = <0>;
nand-ecc-mode = "hw";
- };
+};
+&ohci0 {
- status = "okay";
+};
+&otg_sram {
- status = "okay";
+};
+&pio {
- usb0_id_pin_chip_pro: usb0-id-pin@0 {
allwinner,pins = "PG2";
allwinner,function = "gpio_in";
allwinner,drive = <SUN4I_PINCTRL_10_MA>;
allwinner,pull = <SUN4I_PINCTRL_NO_PULL>;
- };
- wifi_reg_on_pin_chip_pro: wifi-reg-on-pin@0 {
allwinner,pins = "PB10";
allwinner,function = "gpio_out";
allwinner,drive = <SUN4I_PINCTRL_10_MA>;
allwinner,pull = <SUN4I_PINCTRL_NO_PULL>;
- };
+};
+&pwm {
- pinctrl-names = "default";
- pinctrl-0 = <&pwm0_pins_a>, <&pwm1_pins>;
- status = "disabled";
+};
+®_dcdc2 {
- regulator-min-microvolt = <1000000>;
- regulator-max-microvolt = <1400000>;
- regulator-name = "vdd-cpu";
- regulator-always-on;
+};
+®_dcdc3 {
- regulator-min-microvolt = <1000000>;
- regulator-max-microvolt = <1300000>;
- regulator-name = "vdd-sys";
- regulator-always-on;
+};
+®_ldo1 {
- regulator-name = "vdd-rtc";
+};
+®_ldo2 {
- regulator-min-microvolt = <2700000>;
- regulator-max-microvolt = <3300000>;
- regulator-name = "avcc";
- regulator-always-on;
+};
+/*
- Both LDO3 and LDO4 are used in parallel to power up the
- WiFi/BT chip.
- */
+®_ldo3 {
- regulator-min-microvolt = <3300000>;
- regulator-max-microvolt = <3300000>;
- regulator-name = "vcc-wifi-1";
- regulator-always-on;
+};
+®_ldo4 {
- regulator-min-microvolt = <3300000>;
- regulator-max-microvolt = <3300000>;
- regulator-name = "vcc-wifi-2";
- regulator-always-on;
+};
+&uart1 {
- pinctrl-names = "default";
- pinctrl-0 = <&uart1_pins_a>, <&uart1_cts_rts_pins_a>;
- status = "okay";
+};
+&uart2 {
- pinctrl-names = "default";
- pinctrl-0 = <&uart2_pins_a>, <&uart2_cts_rts_pins_a>;
- status = "disabled";
+};
+&uart3 {
- pinctrl-names = "default";
- pinctrl-0 = <&uart3_pins_a>, <&uart3_cts_rts_pins_a>;
- status = "okay";
+};
+&usb_otg {
- /*
* The CHIP Pro doesn't have a controllable VBUS, nor does it
* have any 5v rail on the board itself.
*
* If one wants to use it as a true OTG port, it should be
* done in the baseboard, and its DT / overlay will add it.
*/
- dr_mode = "otg";
- status = "okay";
+};
+&usb_power_supply {
- status = "okay";
+};
+&usbphy {
- pinctrl-names = "default";
- pinctrl-0 = <&usb0_id_pin_chip_pro>;
- usb0_id_det-gpio = <&pio 6 2 GPIO_ACTIVE_HIGH>; /* PG2 */
- usb0_vbus_power-supply = <&usb_power_supply>;
- usb1_vbus-supply = <®_vcc5v0>;
- status = "okay";
+}; diff --git a/arch/arm/dts/ntc-gr8.dtsi b/arch/arm/dts/ntc-gr8.dtsi new file mode 100644 index 000000000000..ea86d4d58db6 --- /dev/null +++ b/arch/arm/dts/ntc-gr8.dtsi @@ -0,0 +1,1132 @@ +/*
- Copyright 2016 Mylène Josserand
- Mylène Josserand mylene.josserand@free-electrons.com
- This file is dual-licensed: you can use it either under the terms
- of the GPL or the X11 license, at your option. Note that this dual
- licensing only applies to this file, and not this project as a
- whole.
- a) This library is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
- Or, alternatively,
- b) Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
- */
+#include <dt-bindings/clock/sun4i-a10-pll2.h> +#include <dt-bindings/dma/sun4i-a10.h> +#include <dt-bindings/pinctrl/sun4i-a10.h>
+/ {
- interrupt-parent = <&intc>;
- #address-cells = <1>;
- #size-cells = <1>;
- cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu0: cpu@0 {
device_type = "cpu";
compatible = "arm,cortex-a8";
reg = <0x0>;
clocks = <&cpu>;
};
- };
- clocks {
#address-cells = <1>;
#size-cells = <1>;
ranges;
/*
* This is a dummy clock, to be used as placeholder on
* other mux clocks when a specific parent clock is not
* yet implemented. It should be dropped when the driver
* is complete.
*/
dummy: dummy {
#clock-cells = <0>;
compatible = "fixed-clock";
clock-frequency = <0>;
};
osc24M: clk@01c20050 {
#clock-cells = <0>;
compatible = "allwinner,sun4i-a10-osc-clk";
reg = <0x01c20050 0x4>;
clock-frequency = <24000000>;
clock-output-names = "osc24M";
};
osc3M: osc3M-clk {
compatible = "fixed-factor-clock";
#clock-cells = <0>;
clock-div = <8>;
clock-mult = <1>;
clocks = <&osc24M>;
clock-output-names = "osc3M";
};
osc32k: clk@0 {
#clock-cells = <0>;
compatible = "fixed-clock";
clock-frequency = <32768>;
clock-output-names = "osc32k";
};
pll1: clk@01c20000 {
#clock-cells = <0>;
compatible = "allwinner,sun4i-a10-pll1-clk";
reg = <0x01c20000 0x4>;
clocks = <&osc24M>;
clock-output-names = "pll1";
};
pll2: clk@01c20008 {
#clock-cells = <1>;
compatible = "allwinner,sun5i-a13-pll2-clk";
reg = <0x01c20008 0x8>;
clocks = <&osc24M>;
clock-output-names = "pll2-1x", "pll2-2x",
"pll2-4x", "pll2-8x";
};
pll3: clk@01c20010 {
#clock-cells = <0>;
compatible = "allwinner,sun4i-a10-pll3-clk";
reg = <0x01c20010 0x4>;
clocks = <&osc3M>;
clock-output-names = "pll3";
};
pll3x2: pll3x2-clk {
compatible = "allwinner,sun4i-a10-pll3-2x-clk";
#clock-cells = <0>;
clock-div = <1>;
clock-mult = <2>;
clocks = <&pll3>;
clock-output-names = "pll3-2x";
};
pll4: clk@01c20018 {
#clock-cells = <0>;
compatible = "allwinner,sun4i-a10-pll1-clk";
reg = <0x01c20018 0x4>;
clocks = <&osc24M>;
clock-output-names = "pll4";
};
pll5: clk@01c20020 {
#clock-cells = <1>;
compatible = "allwinner,sun4i-a10-pll5-clk";
reg = <0x01c20020 0x4>;
clocks = <&osc24M>;
clock-output-names = "pll5_ddr", "pll5_other";
};
pll6: clk@01c20028 {
#clock-cells = <1>;
compatible = "allwinner,sun4i-a10-pll6-clk";
reg = <0x01c20028 0x4>;
clocks = <&osc24M>;
clock-output-names = "pll6_sata", "pll6_other", "pll6";
};
pll7: clk@01c20030 {
#clock-cells = <0>;
compatible = "allwinner,sun4i-a10-pll3-clk";
reg = <0x01c20030 0x4>;
clocks = <&osc3M>;
clock-output-names = "pll7";
};
pll7x2: pll7x2-clk {
compatible = "allwinner,sun4i-a10-pll3-2x-clk";
#clock-cells = <0>;
clock-div = <1>;
clock-mult = <2>;
clocks = <&pll7>;
clock-output-names = "pll7-2x";
};
/* dummy is 200M */
cpu: cpu@01c20054 {
#clock-cells = <0>;
compatible = "allwinner,sun4i-a10-cpu-clk";
reg = <0x01c20054 0x4>;
clocks = <&osc32k>, <&osc24M>, <&pll1>, <&dummy>;
clock-output-names = "cpu";
};
axi: axi@01c20054 {
#clock-cells = <0>;
compatible = "allwinner,sun4i-a10-axi-clk";
reg = <0x01c20054 0x4>;
clocks = <&cpu>;
clock-output-names = "axi";
};
ahb: ahb@01c20054 {
#clock-cells = <0>;
compatible = "allwinner,sun5i-a13-ahb-clk";
reg = <0x01c20054 0x4>;
clocks = <&axi>, <&cpu>, <&pll6 1>;
clock-output-names = "ahb";
/*
* Use PLL6 as parent, instead of CPU/AXI
* which has rate changes due to cpufreq
*/
assigned-clocks = <&ahb>;
assigned-clock-parents = <&pll6 1>;
};
apb0: apb0@01c20054 {
#clock-cells = <0>;
compatible = "allwinner,sun4i-a10-apb0-clk";
reg = <0x01c20054 0x4>;
clocks = <&ahb>;
clock-output-names = "apb0";
};
apb1: clk@01c20058 {
#clock-cells = <0>;
compatible = "allwinner,sun4i-a10-apb1-clk";
reg = <0x01c20058 0x4>;
clocks = <&osc24M>, <&pll6 1>, <&osc32k>;
clock-output-names = "apb1";
};
axi_gates: clk@01c2005c {
#clock-cells = <1>;
compatible = "allwinner,sun4i-a10-gates-clk";
reg = <0x01c2005c 0x4>;
clocks = <&axi>;
clock-indices = <0>;
clock-output-names = "axi_dram";
};
ahb_gates: clk@01c20060 {
#clock-cells = <1>;
compatible = "allwinner,sun5i-a13-ahb-gates-clk";
reg = <0x01c20060 0x8>;
clocks = <&ahb>;
clock-indices = <0>, <1>,
<2>, <5>, <6>,
<7>, <8>, <9>,
<10>, <13>,
<14>, <17>, <20>,
<21>, <22>,
<28>, <32>, <34>,
<36>, <40>, <44>,
<46>, <51>,
<52>;
clock-output-names = "ahb_usbotg", "ahb_ehci",
"ahb_ohci", "ahb_ss", "ahb_dma",
"ahb_bist", "ahb_mmc0", "ahb_mmc1",
"ahb_mmc2", "ahb_nand",
"ahb_sdram", "ahb_emac", "ahb_spi0",
"ahb_spi1", "ahb_spi2",
"ahb_hstimer", "ahb_ve", "ahb_tve",
"ahb_lcd", "ahb_csi", "ahb_de_be",
"ahb_de_fe", "ahb_iep",
"ahb_mali400";
};
apb0_gates: clk@01c20068 {
#clock-cells = <1>;
compatible = "allwinner,sun4i-a10-gates-clk";
reg = <0x01c20068 0x4>;
clocks = <&apb0>;
clock-indices = <0>, <3>,
<5>, <6>;
clock-output-names = "apb0_codec", "apb0_i2s0",
"apb0_pio", "apb0_ir";
};
apb1_gates: clk@01c2006c {
#clock-cells = <1>;
compatible = "allwinner,sun4i-a10-gates-clk";
reg = <0x01c2006c 0x4>;
clocks = <&apb1>;
clock-indices = <0>, <1>,
<2>, <17>,
<18>, <19>;
clock-output-names = "apb1_i2c0", "apb1_i2c1",
"apb1_i2c2", "apb1_uart1",
"apb1_uart2", "apb1_uart3";
};
nand_clk: clk@01c20080 {
#clock-cells = <0>;
compatible = "allwinner,sun4i-a10-mod0-clk";
reg = <0x01c20080 0x4>;
clocks = <&osc24M>, <&pll6 1>, <&pll5 1>;
clock-output-names = "nand";
};
ms_clk: clk@01c20084 {
#clock-cells = <0>;
compatible = "allwinner,sun4i-a10-mod0-clk";
reg = <0x01c20084 0x4>;
clocks = <&osc24M>, <&pll6 1>, <&pll5 1>;
clock-output-names = "ms";
};
mmc0_clk: clk@01c20088 {
#clock-cells = <1>;
compatible = "allwinner,sun4i-a10-mmc-clk";
reg = <0x01c20088 0x4>;
clocks = <&osc24M>, <&pll6 1>, <&pll5 1>;
clock-output-names = "mmc0",
"mmc0_output",
"mmc0_sample";
};
mmc1_clk: clk@01c2008c {
#clock-cells = <1>;
compatible = "allwinner,sun4i-a10-mmc-clk";
reg = <0x01c2008c 0x4>;
clocks = <&osc24M>, <&pll6 1>, <&pll5 1>;
clock-output-names = "mmc1",
"mmc1_output",
"mmc1_sample";
};
mmc2_clk: clk@01c20090 {
#clock-cells = <1>;
compatible = "allwinner,sun4i-a10-mmc-clk";
reg = <0x01c20090 0x4>;
clocks = <&osc24M>, <&pll6 1>, <&pll5 1>;
clock-output-names = "mmc2",
"mmc2_output",
"mmc2_sample";
};
ts_clk: clk@01c20098 {
#clock-cells = <0>;
compatible = "allwinner,sun4i-a10-mod0-clk";
reg = <0x01c20098 0x4>;
clocks = <&osc24M>, <&pll6 1>, <&pll5 1>;
clock-output-names = "ts";
};
ss_clk: clk@01c2009c {
#clock-cells = <0>;
compatible = "allwinner,sun4i-a10-mod0-clk";
reg = <0x01c2009c 0x4>;
clocks = <&osc24M>, <&pll6 1>, <&pll5 1>;
clock-output-names = "ss";
};
spi0_clk: clk@01c200a0 {
#clock-cells = <0>;
compatible = "allwinner,sun4i-a10-mod0-clk";
reg = <0x01c200a0 0x4>;
clocks = <&osc24M>, <&pll6 1>, <&pll5 1>;
clock-output-names = "spi0";
};
spi1_clk: clk@01c200a4 {
#clock-cells = <0>;
compatible = "allwinner,sun4i-a10-mod0-clk";
reg = <0x01c200a4 0x4>;
clocks = <&osc24M>, <&pll6 1>, <&pll5 1>;
clock-output-names = "spi1";
};
spi2_clk: clk@01c200a8 {
#clock-cells = <0>;
compatible = "allwinner,sun4i-a10-mod0-clk";
reg = <0x01c200a8 0x4>;
clocks = <&osc24M>, <&pll6 1>, <&pll5 1>;
clock-output-names = "spi2";
};
ir0_clk: clk@01c200b0 {
#clock-cells = <0>;
compatible = "allwinner,sun4i-a10-mod0-clk";
reg = <0x01c200b0 0x4>;
clocks = <&osc24M>, <&pll6 1>, <&pll5 1>;
clock-output-names = "ir0";
};
i2s0_clk: clk@01c200b8 {
#clock-cells = <0>;
compatible = "allwinner,sun4i-a10-mod1-clk";
reg = <0x01c200b8 0x4>;
clocks = <&pll2 SUN4I_A10_PLL2_8X>,
<&pll2 SUN4I_A10_PLL2_4X>,
<&pll2 SUN4I_A10_PLL2_2X>,
<&pll2 SUN4I_A10_PLL2_1X>;
clock-output-names = "i2s0";
};
spdif_clk: clk@01c200c0 {
#clock-cells = <0>;
compatible = "allwinner,sun4i-a10-mod1-clk";
reg = <0x01c200c0 0x4>;
clocks = <&pll2 SUN4I_A10_PLL2_8X>,
<&pll2 SUN4I_A10_PLL2_4X>,
<&pll2 SUN4I_A10_PLL2_2X>,
<&pll2 SUN4I_A10_PLL2_1X>;
clock-output-names = "spdif";
};
usb_clk: clk@01c200cc {
#clock-cells = <1>;
#reset-cells = <1>;
compatible = "allwinner,sun5i-a13-usb-clk";
reg = <0x01c200cc 0x4>;
clocks = <&pll6 1>;
clock-output-names = "usb_ohci0", "usb_phy";
};
dram_gates: clk@01c20100 {
#clock-cells = <1>;
compatible = "nextthing,gr8-dram-gates-clk",
"allwinner,sun4i-a10-gates-clk";
reg = <0x01c20100 0x4>;
clocks = <&pll5 0>;
clock-indices = <0>,
<1>,
<25>,
<26>,
<29>,
<31>;
clock-output-names = "dram_ve",
"dram_csi",
"dram_de_fe",
"dram_de_be",
"dram_ace",
"dram_iep";
};
de_be_clk: clk@01c20104 {
#clock-cells = <0>;
#reset-cells = <0>;
compatible = "allwinner,sun4i-a10-display-clk";
reg = <0x01c20104 0x4>;
clocks = <&pll3>, <&pll7>, <&pll5 1>;
clock-output-names = "de-be";
};
de_fe_clk: clk@01c2010c {
#clock-cells = <0>;
#reset-cells = <0>;
compatible = "allwinner,sun4i-a10-display-clk";
reg = <0x01c2010c 0x4>;
clocks = <&pll3>, <&pll7>, <&pll5 1>;
clock-output-names = "de-fe";
};
tcon_ch0_clk: clk@01c20118 {
#clock-cells = <0>;
#reset-cells = <1>;
compatible = "allwinner,sun4i-a10-tcon-ch0-clk";
reg = <0x01c20118 0x4>;
clocks = <&pll3>, <&pll7>, <&pll3x2>, <&pll7x2>;
clock-output-names = "tcon-ch0-sclk";
};
tcon_ch1_clk: clk@01c2012c {
#clock-cells = <0>;
compatible = "allwinner,sun4i-a10-tcon-ch1-clk";
reg = <0x01c2012c 0x4>;
clocks = <&pll3>, <&pll7>, <&pll3x2>, <&pll7x2>;
clock-output-names = "tcon-ch1-sclk";
};
codec_clk: clk@01c20140 {
#clock-cells = <0>;
compatible = "allwinner,sun4i-a10-codec-clk";
reg = <0x01c20140 0x4>;
clocks = <&pll2 SUN4I_A10_PLL2_1X>;
clock-output-names = "codec";
};
mbus_clk: clk@01c2015c {
#clock-cells = <0>;
compatible = "allwinner,sun5i-a13-mbus-clk";
reg = <0x01c2015c 0x4>;
clocks = <&osc24M>, <&pll6 1>, <&pll5 1>;
clock-output-names = "mbus";
};
- };
- display-engine {
compatible = "allwinner,sun5i-a13-display-engine";
allwinner,pipelines = <&fe0>;
- };
- soc@01c00000 {
compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;
ranges;
sram-controller@01c00000 {
compatible = "allwinner,sun4i-a10-sram-controller";
reg = <0x01c00000 0x30>;
#address-cells = <1>;
#size-cells = <1>;
ranges;
sram_a: sram@00000000 {
compatible = "mmio-sram";
reg = <0x00000000 0xc000>;
#address-cells = <1>;
#size-cells = <1>;
ranges = <0 0x00000000 0xc000>;
};
sram_d: sram@00010000 {
compatible = "mmio-sram";
reg = <0x00010000 0x1000>;
#address-cells = <1>;
#size-cells = <1>;
ranges = <0 0x00010000 0x1000>;
otg_sram: sram-section@0000 {
compatible = "allwinner,sun4i-a10-sram-d";
reg = <0x0000 0x1000>;
status = "disabled";
};
};
};
dma: dma-controller@01c02000 {
compatible = "allwinner,sun4i-a10-dma";
reg = <0x01c02000 0x1000>;
interrupts = <27>;
clocks = <&ahb_gates 6>;
#dma-cells = <2>;
};
nfc: nand@01c03000 {
compatible = "allwinner,sun4i-a10-nand";
reg = <0x01c03000 0x1000>;
interrupts = <37>;
clocks = <&ahb_gates 13>, <&nand_clk>;
clock-names = "ahb", "mod";
dmas = <&dma SUN4I_DMA_DEDICATED 3>;
dma-names = "rxtx";
status = "disabled";
#address-cells = <1>;
#size-cells = <0>;
};
spi0: spi@01c05000 {
compatible = "allwinner,sun4i-a10-spi";
reg = <0x01c05000 0x1000>;
interrupts = <10>;
clocks = <&ahb_gates 20>, <&spi0_clk>;
clock-names = "ahb", "mod";
dmas = <&dma SUN4I_DMA_DEDICATED 27>,
<&dma SUN4I_DMA_DEDICATED 26>;
dma-names = "rx", "tx";
status = "disabled";
#address-cells = <1>;
#size-cells = <0>;
};
spi1: spi@01c06000 {
compatible = "allwinner,sun4i-a10-spi";
reg = <0x01c06000 0x1000>;
interrupts = <11>;
clocks = <&ahb_gates 21>, <&spi1_clk>;
clock-names = "ahb", "mod";
dmas = <&dma SUN4I_DMA_DEDICATED 9>,
<&dma SUN4I_DMA_DEDICATED 8>;
dma-names = "rx", "tx";
status = "disabled";
#address-cells = <1>;
#size-cells = <0>;
};
tve0: tv-encoder@01c0a000 {
compatible = "allwinner,sun4i-a10-tv-encoder";
reg = <0x01c0a000 0x1000>;
clocks = <&ahb_gates 34>;
resets = <&tcon_ch0_clk 0>;
status = "disabled";
port {
#address-cells = <1>;
#size-cells = <0>;
tve0_in_tcon0: endpoint@0 {
reg = <0>;
remote-endpoint = <&tcon0_out_tve0>;
};
};
};
tcon0: lcd-controller@01c0c000 {
compatible = "allwinner,sun5i-a13-tcon";
reg = <0x01c0c000 0x1000>;
interrupts = <44>;
resets = <&tcon_ch0_clk 1>;
reset-names = "lcd";
clocks = <&ahb_gates 36>,
<&tcon_ch0_clk>,
<&tcon_ch1_clk>;
clock-names = "ahb",
"tcon-ch0",
"tcon-ch1";
clock-output-names = "tcon-pixel-clock";
status = "disabled";
ports {
#address-cells = <1>;
#size-cells = <0>;
tcon0_in: port@0 {
#address-cells = <1>;
#size-cells = <0>;
reg = <0>;
tcon0_in_be0: endpoint@0 {
reg = <0>;
remote-endpoint = <&be0_out_tcon0>;
};
};
tcon0_out: port@1 {
#address-cells = <1>;
#size-cells = <0>;
reg = <1>;
tcon0_out_tve0: endpoint@1 {
reg = <1>;
remote-endpoint = <&tve0_in_tcon0>;
};
};
};
};
mmc0: mmc@01c0f000 {
compatible = "allwinner,sun5i-a13-mmc";
reg = <0x01c0f000 0x1000>;
clocks = <&ahb_gates 8>,
<&mmc0_clk 0>,
<&mmc0_clk 1>,
<&mmc0_clk 2>;
clock-names = "ahb",
"mmc",
"output",
"sample";
interrupts = <32>;
status = "disabled";
#address-cells = <1>;
#size-cells = <0>;
};
mmc1: mmc@01c10000 {
compatible = "allwinner,sun5i-a13-mmc";
reg = <0x01c10000 0x1000>;
clocks = <&ahb_gates 9>,
<&mmc1_clk 0>,
<&mmc1_clk 1>,
<&mmc1_clk 2>;
clock-names = "ahb",
"mmc",
"output",
"sample";
interrupts = <33>;
status = "disabled";
#address-cells = <1>;
#size-cells = <0>;
};
mmc2: mmc@01c11000 {
compatible = "allwinner,sun5i-a13-mmc";
reg = <0x01c11000 0x1000>;
clocks = <&ahb_gates 10>,
<&mmc2_clk 0>,
<&mmc2_clk 1>,
<&mmc2_clk 2>;
clock-names = "ahb",
"mmc",
"output",
"sample";
interrupts = <34>;
status = "disabled";
#address-cells = <1>;
#size-cells = <0>;
};
usb_otg: usb@01c13000 {
compatible = "allwinner,sun4i-a10-musb";
reg = <0x01c13000 0x0400>;
clocks = <&ahb_gates 0>;
interrupts = <38>;
interrupt-names = "mc";
phys = <&usbphy 0>;
phy-names = "usb";
extcon = <&usbphy 0>;
allwinner,sram = <&otg_sram 1>;
status = "disabled";
dr_mode = "otg";
};
usbphy: phy@01c13400 {
#phy-cells = <1>;
compatible = "allwinner,sun5i-a13-usb-phy";
reg = <0x01c13400 0x10 0x01c14800 0x4>;
reg-names = "phy_ctrl", "pmu1";
clocks = <&usb_clk 8>;
clock-names = "usb_phy";
resets = <&usb_clk 0>, <&usb_clk 1>;
reset-names = "usb0_reset", "usb1_reset";
status = "disabled";
};
ehci0: usb@01c14000 {
compatible = "allwinner,sun5i-a13-ehci", "generic-ehci";
reg = <0x01c14000 0x100>;
interrupts = <39>;
clocks = <&ahb_gates 1>;
phys = <&usbphy 1>;
phy-names = "usb";
status = "disabled";
};
ohci0: usb@01c14400 {
compatible = "allwinner,sun5i-a13-ohci", "generic-ohci";
reg = <0x01c14400 0x100>;
interrupts = <40>;
clocks = <&usb_clk 6>, <&ahb_gates 2>;
phys = <&usbphy 1>;
phy-names = "usb";
status = "disabled";
};
spi2: spi@01c17000 {
compatible = "allwinner,sun4i-a10-spi";
reg = <0x01c17000 0x1000>;
interrupts = <12>;
clocks = <&ahb_gates 22>, <&spi2_clk>;
clock-names = "ahb", "mod";
dmas = <&dma SUN4I_DMA_DEDICATED 29>,
<&dma SUN4I_DMA_DEDICATED 28>;
dma-names = "rx", "tx";
status = "disabled";
#address-cells = <1>;
#size-cells = <0>;
};
intc: interrupt-controller@01c20400 {
compatible = "allwinner,sun4i-a10-ic";
reg = <0x01c20400 0x400>;
interrupt-controller;
#interrupt-cells = <1>;
};
pio: pinctrl@01c20800 {
compatible = "nextthing,gr8-pinctrl";
reg = <0x01c20800 0x400>;
interrupts = <28>;
clocks = <&apb0_gates 5>;
gpio-controller;
interrupt-controller;
#interrupt-cells = <3>;
#gpio-cells = <3>;
i2c0_pins_a: i2c0@0 {
allwinner,pins = "PB0", "PB1";
allwinner,function = "i2c0";
allwinner,drive = <SUN4I_PINCTRL_10_MA>;
allwinner,pull = <SUN4I_PINCTRL_NO_PULL>;
};
i2c1_pins_a: i2c1@0 {
allwinner,pins = "PB15", "PB16";
allwinner,function = "i2c1";
allwinner,drive = <SUN4I_PINCTRL_10_MA>;
allwinner,pull = <SUN4I_PINCTRL_NO_PULL>;
};
i2c2_pins_a: i2c2@0 {
allwinner,pins = "PB17", "PB18";
allwinner,function = "i2c2";
allwinner,drive = <SUN4I_PINCTRL_10_MA>;
allwinner,pull = <SUN4I_PINCTRL_NO_PULL>;
};
i2s0_data_pins_a: i2s0-data@0 {
allwinner,pins = "PB6", "PB7", "PB8", "PB9";
allwinner,function = "i2s0";
allwinner,drive = <SUN4I_PINCTRL_10_MA>;
allwinner,pull = <SUN4I_PINCTRL_NO_PULL>;
};
i2s0_mclk_pins_a: i2s0-mclk@0 {
allwinner,pins = "PB5";
allwinner,function = "i2s0";
allwinner,drive = <SUN4I_PINCTRL_10_MA>;
allwinner,pull = <SUN4I_PINCTRL_NO_PULL>;
};
ir0_rx_pins_a: ir0@0 {
allwinner,pins = "PB4";
allwinner,function = "ir0";
allwinner,drive = <SUN4I_PINCTRL_10_MA>;
allwinner,pull = <SUN4I_PINCTRL_NO_PULL>;
};
lcd_rgb666_pins: lcd-rgb666@0 {
allwinner,pins = "PD2", "PD3", "PD4", "PD5", "PD6", "PD7",
"PD10", "PD11", "PD12", "PD13", "PD14", "PD15",
"PD18", "PD19", "PD20", "PD21", "PD22", "PD23",
"PD24", "PD25", "PD26", "PD27";
allwinner,function = "lcd0";
allwinner,drive = <SUN4I_PINCTRL_10_MA>;
allwinner,pull = <SUN4I_PINCTRL_NO_PULL>;
};
mmc0_pins_a: mmc0@0 {
allwinner,pins = "PF0", "PF1", "PF2", "PF3",
"PF4", "PF5";
allwinner,function = "mmc0";
allwinner,drive = <SUN4I_PINCTRL_30_MA>;
allwinner,pull = <SUN4I_PINCTRL_NO_PULL>;
};
nand_pins_a: nand-base0@0 {
allwinner,pins = "PC0", "PC1", "PC2",
"PC5", "PC8", "PC9", "PC10",
"PC11", "PC12", "PC13", "PC14",
"PC15";
allwinner,function = "nand0";
allwinner,drive = <SUN4I_PINCTRL_10_MA>;
allwinner,pull = <SUN4I_PINCTRL_NO_PULL>;
};
nand_cs0_pins_a: nand-cs@0 {
allwinner,pins = "PC4";
allwinner,function = "nand0";
allwinner,drive = <SUN4I_PINCTRL_10_MA>;
allwinner,pull = <SUN4I_PINCTRL_NO_PULL>;
};
nand_rb0_pins_a: nand-rb@0 {
allwinner,pins = "PC6";
allwinner,function = "nand0";
allwinner,drive = <SUN4I_PINCTRL_10_MA>;
allwinner,pull = <SUN4I_PINCTRL_NO_PULL>;
};
pwm0_pins_a: pwm0@0 {
allwinner,pins = "PB2";
allwinner,function = "pwm0";
allwinner,drive = <SUN4I_PINCTRL_10_MA>;
allwinner,pull = <SUN4I_PINCTRL_NO_PULL>;
};
pwm1_pins: pwm1 {
allwinner,pins = "PG13";
allwinner,function = "pwm1";
allwinner,drive = <SUN4I_PINCTRL_10_MA>;
allwinner,pull = <SUN4I_PINCTRL_NO_PULL>;
};
spdif_tx_pins_a: spdif@0 {
allwinner,pins = "PB10";
allwinner,function = "spdif";
allwinner,drive = <SUN4I_PINCTRL_10_MA>;
allwinner,pull = <SUN4I_PINCTRL_PULL_UP>;
};
uart1_pins_a: uart1@1 {
allwinner,pins = "PG3", "PG4";
allwinner,function = "uart1";
allwinner,drive = <SUN4I_PINCTRL_10_MA>;
allwinner,pull = <SUN4I_PINCTRL_NO_PULL>;
};
uart1_cts_rts_pins_a: uart1-cts-rts@0 {
allwinner,pins = "PG5", "PG6";
allwinner,function = "uart1";
allwinner,drive = <SUN4I_PINCTRL_10_MA>;
allwinner,pull = <SUN4I_PINCTRL_NO_PULL>;
};
uart2_pins_a: uart2@1 {
allwinner,pins = "PD2", "PD3";
allwinner,function = "uart2";
allwinner,drive = <SUN4I_PINCTRL_10_MA>;
allwinner,pull = <SUN4I_PINCTRL_NO_PULL>;
};
uart2_cts_rts_pins_a: uart2-cts-rts@0 {
allwinner,pins = "PD4", "PD5";
allwinner,function = "uart2";
allwinner,drive = <SUN4I_PINCTRL_10_MA>;
allwinner,pull = <SUN4I_PINCTRL_NO_PULL>;
};
uart3_pins_a: uart3@1 {
allwinner,pins = "PG9", "PG10";
allwinner,function = "uart3";
allwinner,drive = <SUN4I_PINCTRL_10_MA>;
allwinner,pull = <SUN4I_PINCTRL_NO_PULL>;
};
uart3_cts_rts_pins_a: uart3-cts-rts@0 {
allwinner,pins = "PG11", "PG12";
allwinner,function = "uart3";
allwinner,drive = <SUN4I_PINCTRL_10_MA>;
allwinner,pull = <SUN4I_PINCTRL_NO_PULL>;
};
};
pwm: pwm@01c20e00 {
compatible = "allwinner,sun5i-a10s-pwm";
reg = <0x01c20e00 0xc>;
clocks = <&osc24M>;
#pwm-cells = <3>;
status = "disabled";
};
timer@01c20c00 {
compatible = "allwinner,sun4i-a10-timer";
reg = <0x01c20c00 0x90>;
interrupts = <22>;
clocks = <&osc24M>;
};
wdt: watchdog@01c20c90 {
compatible = "allwinner,sun4i-a10-wdt";
reg = <0x01c20c90 0x10>;
};
spdif: spdif@01c21000 {
#sound-dai-cells = <0>;
compatible = "allwinner,sun4i-a10-spdif";
reg = <0x01c21000 0x400>;
interrupts = <13>;
clocks = <&apb0_gates 1>, <&spdif_clk>;
clock-names = "apb", "spdif";
dmas = <&dma SUN4I_DMA_NORMAL 2>,
<&dma SUN4I_DMA_NORMAL 2>;
dma-names = "rx", "tx";
status = "disabled";
};
ir0: ir@01c21800 {
compatible = "allwinner,sun4i-a10-ir";
clocks = <&apb0_gates 6>, <&ir0_clk>;
clock-names = "apb", "ir";
interrupts = <5>;
reg = <0x01c21800 0x40>;
status = "disabled";
};
i2s0: i2s@01c22400 {
#sound-dai-cells = <0>;
compatible = "allwinner,sun4i-a10-i2s";
reg = <0x01c22400 0x400>;
interrupts = <16>;
clocks = <&apb0_gates 3>, <&i2s0_clk>;
clock-names = "apb", "mod";
dmas = <&dma SUN4I_DMA_NORMAL 3>,
<&dma SUN4I_DMA_NORMAL 3>;
dma-names = "rx", "tx";
status = "disabled";
};
lradc: lradc@01c22800 {
compatible = "allwinner,sun4i-a10-lradc-keys";
reg = <0x01c22800 0x100>;
interrupts = <31>;
status = "disabled";
};
codec: codec@01c22c00 {
#sound-dai-cells = <0>;
compatible = "allwinner,sun4i-a10-codec";
reg = <0x01c22c00 0x40>;
interrupts = <30>;
clocks = <&apb0_gates 0>, <&codec_clk>;
clock-names = "apb", "codec";
dmas = <&dma SUN4I_DMA_NORMAL 19>,
<&dma SUN4I_DMA_NORMAL 19>;
dma-names = "rx", "tx";
status = "disabled";
};
rtp: rtp@01c25000 {
compatible = "allwinner,sun5i-a13-ts";
reg = <0x01c25000 0x100>;
interrupts = <29>;
#thermal-sensor-cells = <0>;
};
uart1: serial@01c28400 {
compatible = "snps,dw-apb-uart";
reg = <0x01c28400 0x400>;
interrupts = <2>;
reg-shift = <2>;
reg-io-width = <4>;
clocks = <&apb1_gates 17>;
status = "disabled";
};
uart2: serial@01c28800 {
compatible = "snps,dw-apb-uart";
reg = <0x01c28800 0x400>;
interrupts = <3>;
reg-shift = <2>;
reg-io-width = <4>;
clocks = <&apb1_gates 18>;
status = "disabled";
};
uart3: serial@01c28c00 {
compatible = "snps,dw-apb-uart";
reg = <0x01c28c00 0x400>;
interrupts = <4>;
reg-shift = <2>;
reg-io-width = <4>;
clocks = <&apb1_gates 19>;
status = "disabled";
};
i2c0: i2c@01c2ac00 {
compatible = "allwinner,sun4i-a10-i2c";
reg = <0x01c2ac00 0x400>;
interrupts = <7>;
clocks = <&apb1_gates 0>;
status = "disabled";
#address-cells = <1>;
#size-cells = <0>;
};
i2c1: i2c@01c2b000 {
compatible = "allwinner,sun4i-a10-i2c";
reg = <0x01c2b000 0x400>;
interrupts = <8>;
clocks = <&apb1_gates 1>;
status = "disabled";
#address-cells = <1>;
#size-cells = <0>;
};
i2c2: i2c@01c2b400 {
compatible = "allwinner,sun4i-a10-i2c";
reg = <0x01c2b400 0x400>;
interrupts = <9>;
clocks = <&apb1_gates 2>;
status = "disabled";
#address-cells = <1>;
#size-cells = <0>;
};
timer@01c60000 {
compatible = "allwinner,sun5i-a13-hstimer";
reg = <0x01c60000 0x1000>;
interrupts = <82>, <83>;
clocks = <&ahb_gates 28>;
};
fe0: display-frontend@01e00000 {
compatible = "allwinner,sun5i-a13-display-frontend";
reg = <0x01e00000 0x20000>;
interrupts = <47>;
clocks = <&ahb_gates 46>, <&de_fe_clk>,
<&dram_gates 25>;
clock-names = "ahb", "mod",
"ram";
resets = <&de_fe_clk>;
status = "disabled";
ports {
#address-cells = <1>;
#size-cells = <0>;
fe0_out: port@1 {
#address-cells = <1>;
#size-cells = <0>;
reg = <1>;
fe0_out_be0: endpoint@0 {
reg = <0>;
remote-endpoint = <&be0_in_fe0>;
};
};
};
};
be0: display-backend@01e60000 {
compatible = "allwinner,sun5i-a13-display-backend";
reg = <0x01e60000 0x10000>;
clocks = <&ahb_gates 44>, <&de_be_clk>,
<&dram_gates 26>;
clock-names = "ahb", "mod",
"ram";
resets = <&de_be_clk>;
status = "disabled";
assigned-clocks = <&de_be_clk>;
assigned-clock-rates = <300000000>;
ports {
#address-cells = <1>;
#size-cells = <0>;
be0_in: port@0 {
#address-cells = <1>;
#size-cells = <0>;
reg = <0>;
be0_in_fe0: endpoint@0 {
reg = <0>;
remote-endpoint = <&fe0_out_be0>;
};
};
be0_out: port@1 {
#address-cells = <1>;
#size-cells = <0>;
reg = <1>;
be0_out_tcon0: endpoint@0 {
reg = <0>;
remote-endpoint = <&tcon0_in_be0>;
};
};
};
};
- };
+};

From: Boris Brezillon boris.brezillon@free-electrons.com
Add the description of the Toshiba TC58NVG2S0H SLC nand to the nand_ids table so we can use the NAND ECC infos and the ONFI timings.
Signed-off-by: Boris Brezillon boris.brezillon@free-electrons.com Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com --- drivers/mtd/nand/nand_ids.c | 3 +++ 1 file changed, 3 insertions(+), 0 deletions(-)
diff --git a/drivers/mtd/nand/nand_ids.c b/drivers/mtd/nand/nand_ids.c index ce0a14e28abb..d36f9006c99d 100644 --- a/drivers/mtd/nand/nand_ids.c +++ b/drivers/mtd/nand/nand_ids.c @@ -46,6 +46,9 @@ struct nand_flash_dev nand_flash_ids[] = { {"TC58NVG2S0F 4G 3.3V 8-bit", { .id = {0x98, 0xdc, 0x90, 0x26, 0x76, 0x15, 0x01, 0x08} }, SZ_4K, SZ_512, SZ_256K, 0, 8, 224, NAND_ECC_INFO(4, SZ_512) }, + {"TC58NVG2S0H 4G 3.3V 8-bit", + { .id = {0x98, 0xdc, 0x90, 0x26, 0x76, 0x16, 0x08, 0x00} }, + SZ_4K, SZ_512, SZ_256K, 0, 8, 256, NAND_ECC_INFO(8, SZ_512) }, {"TC58NVG3S0F 8G 3.3V 8-bit", { .id = {0x98, 0xd3, 0x90, 0x26, 0x76, 0x15, 0x02, 0x08} }, SZ_4K, SZ_1K, SZ_256K, 0, 8, 232, NAND_ECC_INFO(4, SZ_512) },

Hi,
On 08-11-16 17:21, Maxime Ripard wrote:
From: Boris Brezillon boris.brezillon@free-electrons.com
Add the description of the Toshiba TC58NVG2S0H SLC nand to the nand_ids table so we can use the NAND ECC infos and the ONFI timings.
Signed-off-by: Boris Brezillon boris.brezillon@free-electrons.com Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com
Looks good to me:
Reviewed-by: Hans de Goede hdegoede@redhat.com
Regards,
Hans
drivers/mtd/nand/nand_ids.c | 3 +++ 1 file changed, 3 insertions(+), 0 deletions(-)
diff --git a/drivers/mtd/nand/nand_ids.c b/drivers/mtd/nand/nand_ids.c index ce0a14e28abb..d36f9006c99d 100644 --- a/drivers/mtd/nand/nand_ids.c +++ b/drivers/mtd/nand/nand_ids.c @@ -46,6 +46,9 @@ struct nand_flash_dev nand_flash_ids[] = { {"TC58NVG2S0F 4G 3.3V 8-bit", { .id = {0x98, 0xdc, 0x90, 0x26, 0x76, 0x15, 0x01, 0x08} }, SZ_4K, SZ_512, SZ_256K, 0, 8, 224, NAND_ECC_INFO(4, SZ_512) },
- {"TC58NVG2S0H 4G 3.3V 8-bit",
{ .id = {0x98, 0xdc, 0x90, 0x26, 0x76, 0x16, 0x08, 0x00} },
{"TC58NVG3S0F 8G 3.3V 8-bit", { .id = {0x98, 0xd3, 0x90, 0x26, 0x76, 0x15, 0x02, 0x08} }, SZ_4K, SZ_1K, SZ_256K, 0, 8, 232, NAND_ECC_INFO(4, SZ_512) },SZ_4K, SZ_512, SZ_256K, 0, 8, 256, NAND_ECC_INFO(8, SZ_512) },

On Tue, 2016-11-08 at 17:21 +0100, Maxime Ripard wrote:
From: Boris Brezillon boris.brezillon@free-electrons.com
Add the description of the Toshiba TC58NVG2S0H SLC nand to the nand_ids table so we can use the NAND ECC infos and the ONFI timings.
Signed-off-by: Boris Brezillon boris.brezillon@free-electrons.com Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com
drivers/mtd/nand/nand_ids.c | 3 +++ 1 file changed, 3 insertions(+), 0 deletions(-)
Acked-by: Scott Wood oss@buserror.net
-Scott

From: Hans de Goede hdegoede@redhat.com
Enable the NAND and UBI support in the configuration header so that we can (finally) use it.
Signed-off-by: Hans de Goede hdegoede@redhat.com Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com --- include/configs/sunxi-common.h | 26 ++++++++++++++++++++++---- 1 file changed, 22 insertions(+), 4 deletions(-)
diff --git a/include/configs/sunxi-common.h b/include/configs/sunxi-common.h index 8363414828fa..1733767ba53b 100644 --- a/include/configs/sunxi-common.h +++ b/include/configs/sunxi-common.h @@ -129,9 +129,23 @@ #define CONFIG_SERIAL_TAG
#ifdef CONFIG_NAND_SUNXI +#define CONFIG_SYS_NAND_U_BOOT_OFFS (8 << 20) /* 8 MiB */ #define CONFIG_SYS_NAND_MAX_ECCPOS 1664 #define CONFIG_SYS_NAND_ONFI_DETECTION #define CONFIG_SYS_MAX_NAND_DEVICE 8 + +/* Requirements for UBI */ +#define CONFIG_RBTREE +#define CONFIG_LZO +#define CONFIG_CMD_MTDPARTS +#define CONFIG_CMD_UBI +#define CONFIG_CMD_UBIFS +#define CONFIG_MTD_DEVICE + +#define CONFIG_MTD_PARTITIONS + +#define CONFIG_CMD_NAND +#define CONFIG_CMD_NAND_TRIMFFS #endif
#ifdef CONFIG_SPL_SPI_SUNXI @@ -143,7 +157,14 @@ #define CONFIG_GENERIC_MMC #define CONFIG_MMC_SUNXI #define CONFIG_MMC_SUNXI_SLOT 0 -#define CONFIG_ENV_IS_IN_MMC +#endif + +#if defined(CONFIG_ENV_IS_IN_NAND) +#define CONFIG_ENV_OFFSET 0xc00000 +#define CONFIG_ENV_SIZE 0x400000 +#elif defined(CONFIG_ENV_IS_IN_MMC) +#define CONFIG_ENV_OFFSET (544 << 10) /* (8 + 24 + 512) KiB */ +#define CONFIG_ENV_SIZE (128 << 10) /* 128 KiB */ #define CONFIG_SYS_MMC_ENV_DEV 0 /* first detected MMC controller */ #endif
@@ -175,9 +196,6 @@
#define CONFIG_SYS_MONITOR_LEN (768 << 10) /* 768 KiB */
-#define CONFIG_ENV_OFFSET (544 << 10) /* (8 + 24 + 512) KiB */ -#define CONFIG_ENV_SIZE (128 << 10) /* 128 KiB */ - #define CONFIG_FAT_WRITE /* enable write access */
#define CONFIG_SPL_FRAMEWORK

On Tue, 8 Nov 2016 17:21:13 +0100 Maxime Ripard maxime.ripard@free-electrons.com wrote:
From: Hans de Goede hdegoede@redhat.com
Enable the NAND and UBI support in the configuration header so that we can (finally) use it.
Signed-off-by: Hans de Goede hdegoede@redhat.com Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com
include/configs/sunxi-common.h | 26 ++++++++++++++++++++++---- 1 file changed, 22 insertions(+), 4 deletions(-)
diff --git a/include/configs/sunxi-common.h b/include/configs/sunxi-common.h index 8363414828fa..1733767ba53b 100644 --- a/include/configs/sunxi-common.h +++ b/include/configs/sunxi-common.h @@ -129,9 +129,23 @@ #define CONFIG_SERIAL_TAG
#ifdef CONFIG_NAND_SUNXI +#define CONFIG_SYS_NAND_U_BOOT_OFFS (8 << 20) /* 8 MiB */
#define CONFIG_SYS_NAND_MAX_ECCPOS 1664 #define CONFIG_SYS_NAND_ONFI_DETECTION #define CONFIG_SYS_MAX_NAND_DEVICE 8
+/* Requirements for UBI */ +#define CONFIG_RBTREE +#define CONFIG_LZO +#define CONFIG_CMD_MTDPARTS +#define CONFIG_CMD_UBI +#define CONFIG_CMD_UBIFS +#define CONFIG_MTD_DEVICE
+#define CONFIG_MTD_PARTITIONS
+#define CONFIG_CMD_NAND +#define CONFIG_CMD_NAND_TRIMFFS #endif
#ifdef CONFIG_SPL_SPI_SUNXI @@ -143,7 +157,14 @@ #define CONFIG_GENERIC_MMC #define CONFIG_MMC_SUNXI #define CONFIG_MMC_SUNXI_SLOT 0 -#define CONFIG_ENV_IS_IN_MMC +#endif
+#if defined(CONFIG_ENV_IS_IN_NAND) +#define CONFIG_ENV_OFFSET 0xc00000 +#define CONFIG_ENV_SIZE 0x400000 +#elif defined(CONFIG_ENV_IS_IN_MMC) +#define CONFIG_ENV_OFFSET (544 << 10) /* (8 + 24 + 512) KiB */ +#define CONFIG_ENV_SIZE (128 << 10) /* 128 KiB */ #define CONFIG_SYS_MMC_ENV_DEV 0 /* first detected MMC controller */ #endif
@@ -175,9 +196,6 @@
#define CONFIG_SYS_MONITOR_LEN (768 << 10) /* 768 KiB */
-#define CONFIG_ENV_OFFSET (544 << 10) /* (8 + 24 + 512) KiB */ -#define CONFIG_ENV_SIZE (128 << 10) /* 128 KiB */
#define CONFIG_FAT_WRITE /* enable write access */
#define CONFIG_SPL_FRAMEWORK

On Tue, 8 Nov 2016 17:21:13 +0100 Maxime Ripard maxime.ripard@free-electrons.com wrote:
From: Hans de Goede hdegoede@redhat.com
Enable the NAND and UBI support in the configuration header so that we can (finally) use it.
Signed-off-by: Hans de Goede hdegoede@redhat.com Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com
include/configs/sunxi-common.h | 26 ++++++++++++++++++++++---- 1 file changed, 22 insertions(+), 4 deletions(-)
diff --git a/include/configs/sunxi-common.h b/include/configs/sunxi-common.h index 8363414828fa..1733767ba53b 100644 --- a/include/configs/sunxi-common.h +++ b/include/configs/sunxi-common.h @@ -129,9 +129,23 @@ #define CONFIG_SERIAL_TAG
#ifdef CONFIG_NAND_SUNXI +#define CONFIG_SYS_NAND_U_BOOT_OFFS (8 << 20) /* 8 MiB */
Can we make this configurable through Kconfig?
#define CONFIG_SYS_NAND_MAX_ECCPOS 1664 #define CONFIG_SYS_NAND_ONFI_DETECTION #define CONFIG_SYS_MAX_NAND_DEVICE 8
+/* Requirements for UBI */ +#define CONFIG_RBTREE +#define CONFIG_LZO +#define CONFIG_CMD_MTDPARTS +#define CONFIG_CMD_UBI +#define CONFIG_CMD_UBIFS +#define CONFIG_MTD_DEVICE
+#define CONFIG_MTD_PARTITIONS
+#define CONFIG_CMD_NAND +#define CONFIG_CMD_NAND_TRIMFFS #endif
#ifdef CONFIG_SPL_SPI_SUNXI @@ -143,7 +157,14 @@ #define CONFIG_GENERIC_MMC #define CONFIG_MMC_SUNXI #define CONFIG_MMC_SUNXI_SLOT 0 -#define CONFIG_ENV_IS_IN_MMC +#endif
+#if defined(CONFIG_ENV_IS_IN_NAND) +#define CONFIG_ENV_OFFSET 0xc00000 +#define CONFIG_ENV_SIZE 0x400000
Ditto.
+#elif defined(CONFIG_ENV_IS_IN_MMC) +#define CONFIG_ENV_OFFSET (544 << 10) /* (8 + 24 + 512) KiB */ +#define CONFIG_ENV_SIZE (128 << 10) /* 128 KiB */ #define CONFIG_SYS_MMC_ENV_DEV 0 /* first detected MMC controller */ #endif
@@ -175,9 +196,6 @@
#define CONFIG_SYS_MONITOR_LEN (768 << 10) /* 768 KiB */
-#define CONFIG_ENV_OFFSET (544 << 10) /* (8 + 24 + 512) KiB */ -#define CONFIG_ENV_SIZE (128 << 10) /* 128 KiB */
#define CONFIG_FAT_WRITE /* enable write access */
#define CONFIG_SPL_FRAMEWORK

Hi Boris,
On Tue, Nov 08, 2016 at 05:27:48PM +0100, Boris Brezillon wrote:
On Tue, 8 Nov 2016 17:21:13 +0100 Maxime Ripard maxime.ripard@free-electrons.com wrote:
From: Hans de Goede hdegoede@redhat.com
Enable the NAND and UBI support in the configuration header so that we can (finally) use it.
Signed-off-by: Hans de Goede hdegoede@redhat.com Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com
include/configs/sunxi-common.h | 26 ++++++++++++++++++++++---- 1 file changed, 22 insertions(+), 4 deletions(-)
diff --git a/include/configs/sunxi-common.h b/include/configs/sunxi-common.h index 8363414828fa..1733767ba53b 100644 --- a/include/configs/sunxi-common.h +++ b/include/configs/sunxi-common.h @@ -129,9 +129,23 @@ #define CONFIG_SERIAL_TAG
#ifdef CONFIG_NAND_SUNXI +#define CONFIG_SYS_NAND_U_BOOT_OFFS (8 << 20) /* 8 MiB */
Can we make this configurable through Kconfig?
Is there a need for that? AFAIK, everyone in U-Boot defines it there (and converting everyone to Kconfig for all the CONFIG_SYS_NAND options is going to be painful).
Thanks! Maxime

On Wed, 9 Nov 2016 15:32:37 +0100 Maxime Ripard maxime.ripard@free-electrons.com wrote:
Hi Boris,
On Tue, Nov 08, 2016 at 05:27:48PM +0100, Boris Brezillon wrote:
On Tue, 8 Nov 2016 17:21:13 +0100 Maxime Ripard maxime.ripard@free-electrons.com wrote:
From: Hans de Goede hdegoede@redhat.com
Enable the NAND and UBI support in the configuration header so that we can (finally) use it.
Signed-off-by: Hans de Goede hdegoede@redhat.com Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com
include/configs/sunxi-common.h | 26 ++++++++++++++++++++++---- 1 file changed, 22 insertions(+), 4 deletions(-)
diff --git a/include/configs/sunxi-common.h b/include/configs/sunxi-common.h index 8363414828fa..1733767ba53b 100644 --- a/include/configs/sunxi-common.h +++ b/include/configs/sunxi-common.h @@ -129,9 +129,23 @@ #define CONFIG_SERIAL_TAG
#ifdef CONFIG_NAND_SUNXI +#define CONFIG_SYS_NAND_U_BOOT_OFFS (8 << 20) /* 8 MiB */
Can we make this configurable through Kconfig?
Is there a need for that?
Yes, I think so, since each board has a different kind of NAND (with possibly different eraseblock size) and I'm not sure this is always acceptable to lose 8MiB of storage for the SPL images (especially for small SLC NANDs).
AFAIK, everyone in U-Boot defines it there (and converting everyone to Kconfig for all the CONFIG_SYS_NAND options is going to be painful).
It already exists: enable the SYS_NAND_U_BOOT_LOCATIONS Kconfig option, and you should see the SYS_NAND_U_BOOT_OFFS and SYS_NAND_U_BOOT_OFFS_REDUND ones.
Thanks! Maxime

Hi,
On 08-11-16 17:21, Maxime Ripard wrote:
From: Hans de Goede hdegoede@redhat.com
Enable the NAND and UBI support in the configuration header so that we can (finally) use it.
Signed-off-by: Hans de Goede hdegoede@redhat.com Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com
include/configs/sunxi-common.h | 26 ++++++++++++++++++++++---- 1 file changed, 22 insertions(+), 4 deletions(-)
diff --git a/include/configs/sunxi-common.h b/include/configs/sunxi-common.h index 8363414828fa..1733767ba53b 100644 --- a/include/configs/sunxi-common.h +++ b/include/configs/sunxi-common.h @@ -129,9 +129,23 @@ #define CONFIG_SERIAL_TAG
#ifdef CONFIG_NAND_SUNXI +#define CONFIG_SYS_NAND_U_BOOT_OFFS (8 << 20) /* 8 MiB */
As Boris already said, please put this in Kconfig.
#define CONFIG_SYS_NAND_MAX_ECCPOS 1664 #define CONFIG_SYS_NAND_ONFI_DETECTION #define CONFIG_SYS_MAX_NAND_DEVICE 8
+/* Requirements for UBI */ +#define CONFIG_RBTREE +#define CONFIG_LZO +#define CONFIG_CMD_MTDPARTS +#define CONFIG_CMD_UBI +#define CONFIG_CMD_UBIFS +#define CONFIG_MTD_DEVICE
+#define CONFIG_MTD_PARTITIONS
+#define CONFIG_CMD_NAND +#define CONFIG_CMD_NAND_TRIMFFS #endif
#ifdef CONFIG_SPL_SPI_SUNXI @@ -143,7 +157,14 @@ #define CONFIG_GENERIC_MMC #define CONFIG_MMC_SUNXI #define CONFIG_MMC_SUNXI_SLOT 0 -#define CONFIG_ENV_IS_IN_MMC +#endif
+#if defined(CONFIG_ENV_IS_IN_NAND) +#define CONFIG_ENV_OFFSET 0xc00000 +#define CONFIG_ENV_SIZE 0x400000 +#elif defined(CONFIG_ENV_IS_IN_MMC) +#define CONFIG_ENV_OFFSET (544 << 10) /* (8 + 24 + 512) KiB */ +#define CONFIG_ENV_SIZE (128 << 10) /* 128 KiB */ #define CONFIG_SYS_MMC_ENV_DEV 0 /* first detected MMC controller */ #endif
I would greatly prefer putting the env in an UBI partition, I thought that we had agreed on doing that ?
Regards,
Hans
@@ -175,9 +196,6 @@
#define CONFIG_SYS_MONITOR_LEN (768 << 10) /* 768 KiB */
-#define CONFIG_ENV_OFFSET (544 << 10) /* (8 + 24 + 512) KiB */ -#define CONFIG_ENV_SIZE (128 << 10) /* 128 KiB */
#define CONFIG_FAT_WRITE /* enable write access */
#define CONFIG_SPL_FRAMEWORK

Hi,
On Mon, Nov 14, 2016 at 12:18:06PM +0100, Hans de Goede wrote:
#ifdef CONFIG_SPL_SPI_SUNXI @@ -143,7 +157,14 @@ #define CONFIG_GENERIC_MMC #define CONFIG_MMC_SUNXI #define CONFIG_MMC_SUNXI_SLOT 0 -#define CONFIG_ENV_IS_IN_MMC +#endif
+#if defined(CONFIG_ENV_IS_IN_NAND) +#define CONFIG_ENV_OFFSET 0xc00000 +#define CONFIG_ENV_SIZE 0x400000 +#elif defined(CONFIG_ENV_IS_IN_MMC) +#define CONFIG_ENV_OFFSET (544 << 10) /* (8 + 24 + 512) KiB */ +#define CONFIG_ENV_SIZE (128 << 10) /* 128 KiB */ #define CONFIG_SYS_MMC_ENV_DEV 0 /* first detected MMC controller */ #endif
I would greatly prefer putting the env in an UBI partition, I thought that we had agreed on doing that ?
That was mentionned a few times, but I didn't remember having a final decision. I'm not really sure that putting the environment in UBI would be a good idea.
Attaching the UBI volume takes a very significant time. Doing so before the user can see that something is happening in the system feels pretty bad.
Maxime

Hi,
On 14-11-16 15:09, Maxime Ripard wrote:
Hi,
On Mon, Nov 14, 2016 at 12:18:06PM +0100, Hans de Goede wrote:
#ifdef CONFIG_SPL_SPI_SUNXI @@ -143,7 +157,14 @@ #define CONFIG_GENERIC_MMC #define CONFIG_MMC_SUNXI #define CONFIG_MMC_SUNXI_SLOT 0 -#define CONFIG_ENV_IS_IN_MMC +#endif
+#if defined(CONFIG_ENV_IS_IN_NAND) +#define CONFIG_ENV_OFFSET 0xc00000 +#define CONFIG_ENV_SIZE 0x400000 +#elif defined(CONFIG_ENV_IS_IN_MMC) +#define CONFIG_ENV_OFFSET (544 << 10) /* (8 + 24 + 512) KiB */ +#define CONFIG_ENV_SIZE (128 << 10) /* 128 KiB */ #define CONFIG_SYS_MMC_ENV_DEV 0 /* first detected MMC controller */ #endif
I would greatly prefer putting the env in an UBI partition, I thought that we had agreed on doing that ?
That was mentionned a few times, but I didn't remember having a final decision. I'm not really sure that putting the environment in UBI would be a good idea.
Attaching the UBI volume takes a very significant time. Doing so before the user can see that something is happening in the system feels pretty bad.
So maybe we need to print a message before doing so ?
We really need bad-block management for the environment, AFAICT the current non UBI implementation does not even have a backup ?
Regards,
Hans

On Mon, Nov 14, 2016 at 12:18:06PM +0100, Hans de Goede wrote:
#ifdef CONFIG_SPL_SPI_SUNXI @@ -143,7 +157,14 @@ #define CONFIG_GENERIC_MMC #define CONFIG_MMC_SUNXI #define CONFIG_MMC_SUNXI_SLOT 0 -#define CONFIG_ENV_IS_IN_MMC +#endif
+#if defined(CONFIG_ENV_IS_IN_NAND) +#define CONFIG_ENV_OFFSET 0xc00000 +#define CONFIG_ENV_SIZE 0x400000 +#elif defined(CONFIG_ENV_IS_IN_MMC) +#define CONFIG_ENV_OFFSET (544 << 10) /* (8 + 24 + 512) KiB */ +#define CONFIG_ENV_SIZE (128 << 10) /* 128 KiB */ #define CONFIG_SYS_MMC_ENV_DEV 0 /* first detected MMC controller */ #endif
Oh, and this part is broken. It relies on the fact that all board define ENV_IS_IN_MMC (which they should), while obviously they don't. I'm not exactly sure about what the proper fix would be.
Maxime

Hi,
On 14-11-16 15:12, Maxime Ripard wrote:
On Mon, Nov 14, 2016 at 12:18:06PM +0100, Hans de Goede wrote:
#ifdef CONFIG_SPL_SPI_SUNXI @@ -143,7 +157,14 @@ #define CONFIG_GENERIC_MMC #define CONFIG_MMC_SUNXI #define CONFIG_MMC_SUNXI_SLOT 0 -#define CONFIG_ENV_IS_IN_MMC +#endif
+#if defined(CONFIG_ENV_IS_IN_NAND) +#define CONFIG_ENV_OFFSET 0xc00000 +#define CONFIG_ENV_SIZE 0x400000 +#elif defined(CONFIG_ENV_IS_IN_MMC) +#define CONFIG_ENV_OFFSET (544 << 10) /* (8 + 24 + 512) KiB */ +#define CONFIG_ENV_SIZE (128 << 10) /* 128 KiB */ #define CONFIG_SYS_MMC_ENV_DEV 0 /* first detected MMC controller */ #endif
Oh, and this part is broken. It relies on the fact that all board define ENV_IS_IN_MMC (which they should), while obviously they don't. I'm not exactly sure about what the proper fix would be.
Yes, this has been a known problem for a while, but never became an issue due to lack of NAND support.
My preferred way for dealing with this be would for the environment code in u-boot allowing to build in multiple back-ends and use spl_boot_device() which then would need to loose its spl prefix. For the CHIP devices I'm sure you can come up with a simpler fix since those don't have an sdcard-slot. But for other boards this will be necessary as we really don't want to have separate nand and mmc u-boot.bin files.
Anyways this is something for whomever will take over as sunxi custodian from me. Maybe someone from free-electrons can co-maintain with Jagan ?
Regards,
Hans

On Mon, Nov 14, 2016 at 03:21:41PM +0100, Hans de Goede wrote:
Hi,
On 14-11-16 15:12, Maxime Ripard wrote:
On Mon, Nov 14, 2016 at 12:18:06PM +0100, Hans de Goede wrote:
#ifdef CONFIG_SPL_SPI_SUNXI @@ -143,7 +157,14 @@ #define CONFIG_GENERIC_MMC #define CONFIG_MMC_SUNXI #define CONFIG_MMC_SUNXI_SLOT 0 -#define CONFIG_ENV_IS_IN_MMC +#endif
+#if defined(CONFIG_ENV_IS_IN_NAND) +#define CONFIG_ENV_OFFSET 0xc00000 +#define CONFIG_ENV_SIZE 0x400000 +#elif defined(CONFIG_ENV_IS_IN_MMC) +#define CONFIG_ENV_OFFSET (544 << 10) /* (8 + 24 + 512) KiB */ +#define CONFIG_ENV_SIZE (128 << 10) /* 128 KiB */ #define CONFIG_SYS_MMC_ENV_DEV 0 /* first detected MMC controller */ #endif
Oh, and this part is broken. It relies on the fact that all board define ENV_IS_IN_MMC (which they should), while obviously they don't. I'm not exactly sure about what the proper fix would be.
Yes, this has been a known problem for a while, but never became an issue due to lack of NAND support.
My preferred way for dealing with this be would for the environment code in u-boot allowing to build in multiple back-ends and use spl_boot_device() which then would need to loose its spl prefix. For the CHIP devices I'm sure you can come up with a simpler fix since those don't have an sdcard-slot. But for other boards this will be necessary as we really don't want to have separate nand and mmc u-boot.bin files.
Anyways this is something for whomever will take over as sunxi custodian from me. Maybe someone from free-electrons can co-maintain with Jagan ?
I would really like to see the co-maintainer model continue here, if possible, yes. Thanks!

On Mon, Nov 14, 2016 at 03:21:41PM +0100, Hans de Goede wrote:
Hi,
On 14-11-16 15:12, Maxime Ripard wrote:
On Mon, Nov 14, 2016 at 12:18:06PM +0100, Hans de Goede wrote:
#ifdef CONFIG_SPL_SPI_SUNXI @@ -143,7 +157,14 @@ #define CONFIG_GENERIC_MMC #define CONFIG_MMC_SUNXI #define CONFIG_MMC_SUNXI_SLOT 0 -#define CONFIG_ENV_IS_IN_MMC +#endif
+#if defined(CONFIG_ENV_IS_IN_NAND) +#define CONFIG_ENV_OFFSET 0xc00000 +#define CONFIG_ENV_SIZE 0x400000 +#elif defined(CONFIG_ENV_IS_IN_MMC) +#define CONFIG_ENV_OFFSET (544 << 10) /* (8 + 24 + 512) KiB */ +#define CONFIG_ENV_SIZE (128 << 10) /* 128 KiB */ #define CONFIG_SYS_MMC_ENV_DEV 0 /* first detected MMC controller */ #endif
Oh, and this part is broken. It relies on the fact that all board define ENV_IS_IN_MMC (which they should), while obviously they don't. I'm not exactly sure about what the proper fix would be.
Yes, this has been a known problem for a while, but never became an issue due to lack of NAND support.
My preferred way for dealing with this be would for the environment code in u-boot allowing to build in multiple back-ends and use spl_boot_device() which then would need to loose its spl prefix. For the CHIP devices I'm sure you can come up with a simpler fix since those don't have an sdcard-slot. But for other boards this will be necessary as we really don't want to have separate nand and mmc u-boot.bin files.
Ack, thanks.
Anyways this is something for whomever will take over as sunxi custodian from me. Maybe someone from free-electrons can co-maintain with Jagan ?
Yes, that would make a lot of sense. I'll discuss this internally, and do the interim while we come up with someone.
Maxime

This program generates raw SPL images that can be flashed on the NAND with the ECC and randomizer properly set up.
Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com --- tools/.gitignore | 1 +- tools/Makefile | 1 +- tools/sunxi-spl-image-builder.c | 1113 ++++++++++++++++++++++++++++++++- 3 files changed, 1115 insertions(+), 0 deletions(-) create mode 100644 tools/sunxi-spl-image-builder.c
diff --git a/tools/.gitignore b/tools/.gitignore index cb1e722d4575..16574467544c 100644 --- a/tools/.gitignore +++ b/tools/.gitignore @@ -15,6 +15,7 @@ /mkexynosspl /mxsboot /mksunxiboot +/sunxi-spl-image-builder /ncb /proftool /relocate-rela diff --git a/tools/Makefile b/tools/Makefile index 400588cf0f5c..dfeeb23484ce 100644 --- a/tools/Makefile +++ b/tools/Makefile @@ -171,6 +171,7 @@ hostprogs-$(CONFIG_MX28) += mxsboot HOSTCFLAGS_mxsboot.o := -pedantic
hostprogs-$(CONFIG_ARCH_SUNXI) += mksunxiboot +hostprogs-$(CONFIG_ARCH_SUNXI) += sunxi-spl-image-builder
hostprogs-$(CONFIG_NETCONSOLE) += ncb hostprogs-$(CONFIG_SHA1_CHECK_UB_IMG) += ubsha1 diff --git a/tools/sunxi-spl-image-builder.c b/tools/sunxi-spl-image-builder.c new file mode 100644 index 000000000000..0f915eb2bdf5 --- /dev/null +++ b/tools/sunxi-spl-image-builder.c @@ -0,0 +1,1113 @@ +/* + * Generic binary BCH encoding/decoding library + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 as published by + * the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, write to the Free Software Foundation, Inc., 51 + * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * For the BCH implementation: + * + * Copyright © 2011 Parrot S.A. + * + * Author: Ivan Djelic ivan.djelic@parrot.com + * + * See also: + * http://lxr.free-electrons.com/source/lib/bch.c + * + * For the randomizer and image builder implementation: + * + * Copyright © 2016 NextThing Co. + * Copyright © 2016 Free Electrons + * + * Author: Boris Brezillon boris.brezillon@free-electrons.com + * + */ + +#include <stdint.h> +#include <stdlib.h> +#include <string.h> +#include <stdio.h> +#include <linux/kernel.h> +#include <linux/errno.h> +#include <asm/byteorder.h> +#include <endian.h> +#include <getopt.h> +#include <version.h> + +#if defined(CONFIG_BCH_CONST_PARAMS) +#define GF_M(_p) (CONFIG_BCH_CONST_M) +#define GF_T(_p) (CONFIG_BCH_CONST_T) +#define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1) +#else +#define GF_M(_p) ((_p)->m) +#define GF_T(_p) ((_p)->t) +#define GF_N(_p) ((_p)->n) +#endif + +#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d)) + +#define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32) +#define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8) + +#ifndef dbg +#define dbg(_fmt, args...) do {} while (0) +#endif + +#define cpu_to_be32 htobe32 +#define kfree free +#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0])) + +#define BCH_PRIMITIVE_POLY 0x5803 + +struct image_info { + int ecc_strength; + int ecc_step_size; + int page_size; + int oob_size; + int usable_page_size; + int eraseblock_size; + int scramble; + int boot0; + off_t offset; + const char *source; + const char *dest; +}; + +/** + * struct bch_control - BCH control structure + * @m: Galois field order + * @n: maximum codeword size in bits (= 2^m-1) + * @t: error correction capability in bits + * @ecc_bits: ecc exact size in bits, i.e. generator polynomial degree (<=m*t) + * @ecc_bytes: ecc max size (m*t bits) in bytes + * @a_pow_tab: Galois field GF(2^m) exponentiation lookup table + * @a_log_tab: Galois field GF(2^m) log lookup table + * @mod8_tab: remainder generator polynomial lookup tables + * @ecc_buf: ecc parity words buffer + * @ecc_buf2: ecc parity words buffer + * @xi_tab: GF(2^m) base for solving degree 2 polynomial roots + * @syn: syndrome buffer + * @cache: log-based polynomial representation buffer + * @elp: error locator polynomial + * @poly_2t: temporary polynomials of degree 2t + */ +struct bch_control { + unsigned int m; + unsigned int n; + unsigned int t; + unsigned int ecc_bits; + unsigned int ecc_bytes; +/* private: */ + uint16_t *a_pow_tab; + uint16_t *a_log_tab; + uint32_t *mod8_tab; + uint32_t *ecc_buf; + uint32_t *ecc_buf2; + unsigned int *xi_tab; + unsigned int *syn; + int *cache; + struct gf_poly *elp; + struct gf_poly *poly_2t[4]; +}; + +static int fls(int x) +{ + int r = 32; + + if (!x) + return 0; + if (!(x & 0xffff0000u)) { + x <<= 16; + r -= 16; + } + if (!(x & 0xff000000u)) { + x <<= 8; + r -= 8; + } + if (!(x & 0xf0000000u)) { + x <<= 4; + r -= 4; + } + if (!(x & 0xc0000000u)) { + x <<= 2; + r -= 2; + } + if (!(x & 0x80000000u)) { + x <<= 1; + r -= 1; + } + return r; +} + +/* + * represent a polynomial over GF(2^m) + */ +struct gf_poly { + unsigned int deg; /* polynomial degree */ + unsigned int c[0]; /* polynomial terms */ +}; + +/* given its degree, compute a polynomial size in bytes */ +#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int)) + +/* polynomial of degree 1 */ +struct gf_poly_deg1 { + struct gf_poly poly; + unsigned int c[2]; +}; + +/* + * same as encode_bch(), but process input data one byte at a time + */ +static void encode_bch_unaligned(struct bch_control *bch, + const unsigned char *data, unsigned int len, + uint32_t *ecc) +{ + int i; + const uint32_t *p; + const int l = BCH_ECC_WORDS(bch)-1; + + while (len--) { + p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff); + + for (i = 0; i < l; i++) + ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++); + + ecc[l] = (ecc[l] << 8)^(*p); + } +} + +/* + * convert ecc bytes to aligned, zero-padded 32-bit ecc words + */ +static void load_ecc8(struct bch_control *bch, uint32_t *dst, + const uint8_t *src) +{ + uint8_t pad[4] = {0, 0, 0, 0}; + unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; + + for (i = 0; i < nwords; i++, src += 4) + dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3]; + + memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords); + dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3]; +} + +/* + * convert 32-bit ecc words to ecc bytes + */ +static void store_ecc8(struct bch_control *bch, uint8_t *dst, + const uint32_t *src) +{ + uint8_t pad[4]; + unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; + + for (i = 0; i < nwords; i++) { + *dst++ = (src[i] >> 24); + *dst++ = (src[i] >> 16) & 0xff; + *dst++ = (src[i] >> 8) & 0xff; + *dst++ = (src[i] >> 0) & 0xff; + } + pad[0] = (src[nwords] >> 24); + pad[1] = (src[nwords] >> 16) & 0xff; + pad[2] = (src[nwords] >> 8) & 0xff; + pad[3] = (src[nwords] >> 0) & 0xff; + memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords); +} + +/** + * encode_bch - calculate BCH ecc parity of data + * @bch: BCH control structure + * @data: data to encode + * @len: data length in bytes + * @ecc: ecc parity data, must be initialized by caller + * + * The @ecc parity array is used both as input and output parameter, in order to + * allow incremental computations. It should be of the size indicated by member + * @ecc_bytes of @bch, and should be initialized to 0 before the first call. + * + * The exact number of computed ecc parity bits is given by member @ecc_bits of + * @bch; it may be less than m*t for large values of t. + */ +static void encode_bch(struct bch_control *bch, const uint8_t *data, + unsigned int len, uint8_t *ecc) +{ + const unsigned int l = BCH_ECC_WORDS(bch)-1; + unsigned int i, mlen; + unsigned long m; + uint32_t w, r[l+1]; + const uint32_t * const tab0 = bch->mod8_tab; + const uint32_t * const tab1 = tab0 + 256*(l+1); + const uint32_t * const tab2 = tab1 + 256*(l+1); + const uint32_t * const tab3 = tab2 + 256*(l+1); + const uint32_t *pdata, *p0, *p1, *p2, *p3; + + if (ecc) { + /* load ecc parity bytes into internal 32-bit buffer */ + load_ecc8(bch, bch->ecc_buf, ecc); + } else { + memset(bch->ecc_buf, 0, sizeof(r)); + } + + /* process first unaligned data bytes */ + m = ((uintptr_t)data) & 3; + if (m) { + mlen = (len < (4-m)) ? len : 4-m; + encode_bch_unaligned(bch, data, mlen, bch->ecc_buf); + data += mlen; + len -= mlen; + } + + /* process 32-bit aligned data words */ + pdata = (uint32_t *)data; + mlen = len/4; + data += 4*mlen; + len -= 4*mlen; + memcpy(r, bch->ecc_buf, sizeof(r)); + + /* + * split each 32-bit word into 4 polynomials of weight 8 as follows: + * + * 31 ...24 23 ...16 15 ... 8 7 ... 0 + * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt + * tttttttt mod g = r0 (precomputed) + * zzzzzzzz 00000000 mod g = r1 (precomputed) + * yyyyyyyy 00000000 00000000 mod g = r2 (precomputed) + * xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed) + * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3 + */ + while (mlen--) { + /* input data is read in big-endian format */ + w = r[0]^cpu_to_be32(*pdata++); + p0 = tab0 + (l+1)*((w >> 0) & 0xff); + p1 = tab1 + (l+1)*((w >> 8) & 0xff); + p2 = tab2 + (l+1)*((w >> 16) & 0xff); + p3 = tab3 + (l+1)*((w >> 24) & 0xff); + + for (i = 0; i < l; i++) + r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i]; + + r[l] = p0[l]^p1[l]^p2[l]^p3[l]; + } + memcpy(bch->ecc_buf, r, sizeof(r)); + + /* process last unaligned bytes */ + if (len) + encode_bch_unaligned(bch, data, len, bch->ecc_buf); + + /* store ecc parity bytes into original parity buffer */ + if (ecc) + store_ecc8(bch, ecc, bch->ecc_buf); +} + +static inline int modulo(struct bch_control *bch, unsigned int v) +{ + const unsigned int n = GF_N(bch); + while (v >= n) { + v -= n; + v = (v & n) + (v >> GF_M(bch)); + } + return v; +} + +/* + * shorter and faster modulo function, only works when v < 2N. + */ +static inline int mod_s(struct bch_control *bch, unsigned int v) +{ + const unsigned int n = GF_N(bch); + return (v < n) ? v : v-n; +} + +static inline int deg(unsigned int poly) +{ + /* polynomial degree is the most-significant bit index */ + return fls(poly)-1; +} + +/* Galois field basic operations: multiply, divide, inverse, etc. */ + +static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a, + unsigned int b) +{ + return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ + bch->a_log_tab[b])] : 0; +} + +static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a) +{ + return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0; +} + +static inline unsigned int a_pow(struct bch_control *bch, int i) +{ + return bch->a_pow_tab[modulo(bch, i)]; +} + +static inline int a_log(struct bch_control *bch, unsigned int x) +{ + return bch->a_log_tab[x]; +} + +/* + * generate Galois field lookup tables + */ +static int build_gf_tables(struct bch_control *bch, unsigned int poly) +{ + unsigned int i, x = 1; + const unsigned int k = 1 << deg(poly); + + /* primitive polynomial must be of degree m */ + if (k != (1u << GF_M(bch))) + return -1; + + for (i = 0; i < GF_N(bch); i++) { + bch->a_pow_tab[i] = x; + bch->a_log_tab[x] = i; + if (i && (x == 1)) + /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */ + return -1; + x <<= 1; + if (x & k) + x ^= poly; + } + bch->a_pow_tab[GF_N(bch)] = 1; + bch->a_log_tab[0] = 0; + + return 0; +} + +/* + * compute generator polynomial remainder tables for fast encoding + */ +static void build_mod8_tables(struct bch_control *bch, const uint32_t *g) +{ + int i, j, b, d; + uint32_t data, hi, lo, *tab; + const int l = BCH_ECC_WORDS(bch); + const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32); + const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32); + + memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab)); + + for (i = 0; i < 256; i++) { + /* p(X)=i is a small polynomial of weight <= 8 */ + for (b = 0; b < 4; b++) { + /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */ + tab = bch->mod8_tab + (b*256+i)*l; + data = i << (8*b); + while (data) { + d = deg(data); + /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */ + data ^= g[0] >> (31-d); + for (j = 0; j < ecclen; j++) { + hi = (d < 31) ? g[j] << (d+1) : 0; + lo = (j+1 < plen) ? + g[j+1] >> (31-d) : 0; + tab[j] ^= hi|lo; + } + } + } + } +} + +/* + * build a base for factoring degree 2 polynomials + */ +static int build_deg2_base(struct bch_control *bch) +{ + const int m = GF_M(bch); + int i, j, r; + unsigned int sum, x, y, remaining, ak = 0, xi[m]; + + /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */ + for (i = 0; i < m; i++) { + for (j = 0, sum = 0; j < m; j++) + sum ^= a_pow(bch, i*(1 << j)); + + if (sum) { + ak = bch->a_pow_tab[i]; + break; + } + } + /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */ + remaining = m; + memset(xi, 0, sizeof(xi)); + + for (x = 0; (x <= GF_N(bch)) && remaining; x++) { + y = gf_sqr(bch, x)^x; + for (i = 0; i < 2; i++) { + r = a_log(bch, y); + if (y && (r < m) && !xi[r]) { + bch->xi_tab[r] = x; + xi[r] = 1; + remaining--; + dbg("x%d = %x\n", r, x); + break; + } + y ^= ak; + } + } + /* should not happen but check anyway */ + return remaining ? -1 : 0; +} + +static void *bch_alloc(size_t size, int *err) +{ + void *ptr; + + ptr = malloc(size); + if (ptr == NULL) + *err = 1; + return ptr; +} + +/* + * compute generator polynomial for given (m,t) parameters. + */ +static uint32_t *compute_generator_polynomial(struct bch_control *bch) +{ + const unsigned int m = GF_M(bch); + const unsigned int t = GF_T(bch); + int n, err = 0; + unsigned int i, j, nbits, r, word, *roots; + struct gf_poly *g; + uint32_t *genpoly; + + g = bch_alloc(GF_POLY_SZ(m*t), &err); + roots = bch_alloc((bch->n+1)*sizeof(*roots), &err); + genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err); + + if (err) { + kfree(genpoly); + genpoly = NULL; + goto finish; + } + + /* enumerate all roots of g(X) */ + memset(roots , 0, (bch->n+1)*sizeof(*roots)); + for (i = 0; i < t; i++) { + for (j = 0, r = 2*i+1; j < m; j++) { + roots[r] = 1; + r = mod_s(bch, 2*r); + } + } + /* build generator polynomial g(X) */ + g->deg = 0; + g->c[0] = 1; + for (i = 0; i < GF_N(bch); i++) { + if (roots[i]) { + /* multiply g(X) by (X+root) */ + r = bch->a_pow_tab[i]; + g->c[g->deg+1] = 1; + for (j = g->deg; j > 0; j--) + g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1]; + + g->c[0] = gf_mul(bch, g->c[0], r); + g->deg++; + } + } + /* store left-justified binary representation of g(X) */ + n = g->deg+1; + i = 0; + + while (n > 0) { + nbits = (n > 32) ? 32 : n; + for (j = 0, word = 0; j < nbits; j++) { + if (g->c[n-1-j]) + word |= 1u << (31-j); + } + genpoly[i++] = word; + n -= nbits; + } + bch->ecc_bits = g->deg; + +finish: + kfree(g); + kfree(roots); + + return genpoly; +} + +/** + * free_bch - free the BCH control structure + * @bch: BCH control structure to release + */ +static void free_bch(struct bch_control *bch) +{ + unsigned int i; + + if (bch) { + kfree(bch->a_pow_tab); + kfree(bch->a_log_tab); + kfree(bch->mod8_tab); + kfree(bch->ecc_buf); + kfree(bch->ecc_buf2); + kfree(bch->xi_tab); + kfree(bch->syn); + kfree(bch->cache); + kfree(bch->elp); + + for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) + kfree(bch->poly_2t[i]); + + kfree(bch); + } +} + +/** + * init_bch - initialize a BCH encoder/decoder + * @m: Galois field order, should be in the range 5-15 + * @t: maximum error correction capability, in bits + * @prim_poly: user-provided primitive polynomial (or 0 to use default) + * + * Returns: + * a newly allocated BCH control structure if successful, NULL otherwise + * + * This initialization can take some time, as lookup tables are built for fast + * encoding/decoding; make sure not to call this function from a time critical + * path. Usually, init_bch() should be called on module/driver init and + * free_bch() should be called to release memory on exit. + * + * You may provide your own primitive polynomial of degree @m in argument + * @prim_poly, or let init_bch() use its default polynomial. + * + * Once init_bch() has successfully returned a pointer to a newly allocated + * BCH control structure, ecc length in bytes is given by member @ecc_bytes of + * the structure. + */ +static struct bch_control *init_bch(int m, int t, unsigned int prim_poly) +{ + int err = 0; + unsigned int i, words; + uint32_t *genpoly; + struct bch_control *bch = NULL; + + const int min_m = 5; + const int max_m = 15; + + /* default primitive polynomials */ + static const unsigned int prim_poly_tab[] = { + 0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b, + 0x402b, 0x8003, + }; + +#if defined(CONFIG_BCH_CONST_PARAMS) + if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) { + printk(KERN_ERR "bch encoder/decoder was configured to support " + "parameters m=%d, t=%d only!\n", + CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T); + goto fail; + } +#endif + if ((m < min_m) || (m > max_m)) + /* + * values of m greater than 15 are not currently supported; + * supporting m > 15 would require changing table base type + * (uint16_t) and a small patch in matrix transposition + */ + goto fail; + + /* sanity checks */ + if ((t < 1) || (m*t >= ((1 << m)-1))) + /* invalid t value */ + goto fail; + + /* select a primitive polynomial for generating GF(2^m) */ + if (prim_poly == 0) + prim_poly = prim_poly_tab[m-min_m]; + + bch = malloc(sizeof(*bch)); + if (bch == NULL) + goto fail; + + memset(bch, 0, sizeof(*bch)); + + bch->m = m; + bch->t = t; + bch->n = (1 << m)-1; + words = DIV_ROUND_UP(m*t, 32); + bch->ecc_bytes = DIV_ROUND_UP(m*t, 8); + bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err); + bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err); + bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err); + bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err); + bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err); + bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err); + bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err); + bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err); + bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err); + + for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) + bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err); + + if (err) + goto fail; + + err = build_gf_tables(bch, prim_poly); + if (err) + goto fail; + + /* use generator polynomial for computing encoding tables */ + genpoly = compute_generator_polynomial(bch); + if (genpoly == NULL) + goto fail; + + build_mod8_tables(bch, genpoly); + kfree(genpoly); + + err = build_deg2_base(bch); + if (err) + goto fail; + + return bch; + +fail: + free_bch(bch); + return NULL; +} + +static void swap_bits(uint8_t *buf, int len) +{ + int i, j; + + for (j = 0; j < len; j++) { + uint8_t byte = buf[j]; + + buf[j] = 0; + for (i = 0; i < 8; i++) { + if (byte & (1 << i)) + buf[j] |= (1 << (7 - i)); + } + } +} + +static uint16_t lfsr_step(uint16_t state, int count) +{ + state &= 0x7fff; + while (count--) + state = ((state >> 1) | + ((((state >> 0) ^ (state >> 1)) & 1) << 14)) & 0x7fff; + + return state; +} + +static uint16_t default_scrambler_seeds[] = { + 0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72, + 0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436, + 0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d, + 0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130, + 0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56, + 0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55, + 0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb, + 0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17, + 0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62, + 0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064, + 0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126, + 0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e, + 0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3, + 0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b, + 0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d, + 0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db, +}; + +static uint16_t brom_scrambler_seeds[] = { 0x4a80 }; + +static void scramble(const struct image_info *info, + int page, uint8_t *data, int datalen) +{ + uint16_t state; + int i; + + /* Boot0 is always scrambled no matter the command line option. */ + if (info->boot0) { + state = brom_scrambler_seeds[0]; + } else { + unsigned seedmod = info->eraseblock_size / info->page_size; + + /* Bail out earlier if the user didn't ask for scrambling. */ + if (!info->scramble) + return; + + if (seedmod > ARRAY_SIZE(default_scrambler_seeds)) + seedmod = ARRAY_SIZE(default_scrambler_seeds); + + state = default_scrambler_seeds[page % seedmod]; + } + + /* Prepare the initial state... */ + state = lfsr_step(state, 15); + + /* and start scrambling data. */ + for (i = 0; i < datalen; i++) { + data[i] ^= state; + state = lfsr_step(state, 8); + } +} + +static int write_page(const struct image_info *info, uint8_t *buffer, + FILE *src, FILE *rnd, FILE *dst, + struct bch_control *bch, int page) +{ + int steps = info->usable_page_size / info->ecc_step_size; + int eccbytes = DIV_ROUND_UP(info->ecc_strength * 14, 8); + off_t pos = ftell(dst); + size_t pad, cnt; + int i; + + if (eccbytes % 2) + eccbytes++; + + memset(buffer, 0xff, info->page_size + info->oob_size); + cnt = fread(buffer, 1, info->usable_page_size, src); + if (!cnt) { + if (!feof(src)) { + fprintf(stderr, + "Failed to read data from the source\n"); + return -1; + } else { + return 0; + } + } + + fwrite(buffer, info->page_size + info->oob_size, 1, dst); + + for (i = 0; i < info->usable_page_size; i++) { + if (buffer[i] != 0xff) + break; + } + + /* We leave empty pages at 0xff. */ + if (i == info->usable_page_size) + return 0; + + /* Restore the source pointer to read it again. */ + fseek(src, -cnt, SEEK_CUR); + + /* Randomize unused space if scrambling is required. */ + if (info->scramble) { + int offs; + + if (info->boot0) { + offs = steps * (info->ecc_step_size + eccbytes + 4); + cnt = info->page_size + info->oob_size - offs; + fread(buffer + offs, 1, cnt, rnd); + } else { + offs = info->page_size + (steps * (eccbytes + 4)); + cnt = info->page_size + info->oob_size - offs; + memset(buffer + offs, 0xff, cnt); + scramble(info, page, buffer + offs, cnt); + } + fseek(dst, pos + offs, SEEK_SET); + fwrite(buffer + offs, cnt, 1, dst); + } + + for (i = 0; i < steps; i++) { + int ecc_offs, data_offs; + uint8_t *ecc; + + memset(buffer, 0xff, info->ecc_step_size + eccbytes + 4); + ecc = buffer + info->ecc_step_size + 4; + if (info->boot0) { + data_offs = i * (info->ecc_step_size + eccbytes + 4); + ecc_offs = data_offs + info->ecc_step_size + 4; + } else { + data_offs = i * info->ecc_step_size; + ecc_offs = info->page_size + 4 + (i * (eccbytes + 4)); + } + + cnt = fread(buffer, 1, info->ecc_step_size, src); + if (!cnt && !feof(src)) { + fprintf(stderr, + "Failed to read data from the source\n"); + return -1; + } + + pad = info->ecc_step_size - cnt; + if (pad) { + if (info->scramble && info->boot0) + fread(buffer + cnt, 1, pad, rnd); + else + memset(buffer + cnt, 0xff, pad); + } + + memset(ecc, 0, eccbytes); + swap_bits(buffer, info->ecc_step_size + 4); + encode_bch(bch, buffer, info->ecc_step_size + 4, ecc); + swap_bits(buffer, info->ecc_step_size + 4); + swap_bits(ecc, eccbytes); + scramble(info, page, buffer, info->ecc_step_size + 4 + eccbytes); + + fseek(dst, pos + data_offs, SEEK_SET); + fwrite(buffer, info->ecc_step_size, 1, dst); + fseek(dst, pos + ecc_offs - 4, SEEK_SET); + fwrite(ecc - 4, eccbytes + 4, 1, dst); + } + + /* Fix BBM. */ + fseek(dst, pos + info->page_size, SEEK_SET); + memset(buffer, 0xff, 2); + fwrite(buffer, 2, 1, dst); + + /* Make dst pointer point to the next page. */ + fseek(dst, pos + info->page_size + info->oob_size, SEEK_SET); + + return 0; +} + +static int create_image(const struct image_info *info) +{ + off_t page = info->offset / info->page_size; + struct bch_control *bch; + FILE *src, *dst, *rnd; + uint8_t *buffer; + + bch = init_bch(14, info->ecc_strength, BCH_PRIMITIVE_POLY); + if (!bch) { + fprintf(stderr, "Failed to init the BCH engine\n"); + return -1; + } + + buffer = malloc(info->page_size + info->oob_size); + if (!buffer) { + fprintf(stderr, "Failed to allocate the NAND page buffer\n"); + return -1; + } + + memset(buffer, 0xff, info->page_size + info->oob_size); + + src = fopen(info->source, "r"); + if (!src) { + fprintf(stderr, "Failed to open source file (%s)\n", + info->source); + return -1; + } + + dst = fopen(info->dest, "w"); + if (!dst) { + fprintf(stderr, "Failed to open dest file (%s)\n", info->dest); + return -1; + } + + rnd = fopen("/dev/urandom", "r"); + if (!rnd) { + fprintf(stderr, "Failed to open /dev/urandom\n"); + return -1; + } + + while (!feof(src)) { + int ret; + + ret = write_page(info, buffer, src, rnd, dst, bch, page++); + if (ret) + return ret; + } + + return 0; +} + +static void display_help(int status) +{ + fprintf(status == EXIT_SUCCESS ? stdout : stderr, + "sunxi-nand-image-builder %s\n" + "\n" + "Usage: sunxi-nand-image-builder [OPTIONS] source-image output-image\n" + "\n" + "Creates a raw NAND image that can be read by the sunxi NAND controller.\n" + "\n" + "-h --help Display this help and exit\n" + "-c <str>/<step> --ecc=<str>/<step> ECC config (strength/step-size)\n" + "-p <size> --page=<size> Page size\n" + "-o <size> --oob=<size> OOB size\n" + "-u <size> --usable=<size> Usable page size\n" + "-e <size> --eraseblock=<size> Erase block size\n" + "-b --boot0 Build a boot0 image.\n" + "-s --scramble Scramble data\n" + "-a <offset> --address=<offset> Where the image will be programmed.\n" + "\n" + "Notes:\n" + "All the information you need to pass to this tool should be part of\n" + "the NAND datasheet.\n" + "\n" + "The NAND controller only supports the following ECC configs\n" + " Valid ECC strengths: 16, 24, 28, 32, 40, 48, 56, 60 and 64\n" + " Valid ECC step size: 512 and 1024\n" + "\n" + "If you are building a boot0 image, you'll have specify extra options.\n" + "These options should be chosen based on the layouts described here:\n" + " http://linux-sunxi.org/NAND#More_information_on_BROM_NAND%5Cn" + "\n" + " --usable should be assigned the 'Hardware page' value\n" + " --ecc should be assigned the 'ECC capacity'/'ECC page' values\n" + " --usable should be smaller than --page\n" + "\n" + "The --address option is only required for non-boot0 images that are \n" + "meant to be programmed at a non eraseblock aligned offset.\n" + "\n" + "Examples:\n" + " The H27UCG8T2BTR-BC NAND exposes\n" + " * 16k pages\n" + " * 1280 OOB bytes per page\n" + " * 4M eraseblocks\n" + " * requires data scrambling\n" + " * expects a minimum ECC of 40bits/1024bytes\n" + "\n" + " A normal image can be generated with\n" + " sunxi-nand-image-builder -p 16384 -o 1280 -e 0x400000 -s -c 40/1024\n" + " A boot0 image can be generated with\n" + " sunxi-nand-image-builder -p 16384 -o 1280 -e 0x400000 -s -b -u 4096 -c 64/1024\n", + PLAIN_VERSION); + exit(status); +} + +static int check_image_info(struct image_info *info) +{ + static int valid_ecc_strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 }; + int eccbytes, eccsteps; + unsigned i; + + if (!info->page_size) { + fprintf(stderr, "--page is missing\n"); + return -EINVAL; + } + + if (!info->page_size) { + fprintf(stderr, "--oob is missing\n"); + return -EINVAL; + } + + if (!info->eraseblock_size) { + fprintf(stderr, "--eraseblock is missing\n"); + return -EINVAL; + } + + if (info->ecc_step_size != 512 && info->ecc_step_size != 1024) { + fprintf(stderr, "Invalid ECC step argument: %d\n", + info->ecc_step_size); + return -EINVAL; + } + + for (i = 0; i < ARRAY_SIZE(valid_ecc_strengths); i++) { + if (valid_ecc_strengths[i] == info->ecc_strength) + break; + } + + if (i == ARRAY_SIZE(valid_ecc_strengths)) { + fprintf(stderr, "Invalid ECC strength argument: %d\n", + info->ecc_strength); + return -EINVAL; + } + + eccbytes = DIV_ROUND_UP(info->ecc_strength * 14, 8); + if (eccbytes % 2) + eccbytes++; + eccbytes += 4; + + eccsteps = info->usable_page_size / info->ecc_step_size; + + if (info->page_size + info->oob_size < + info->usable_page_size + (eccsteps * eccbytes)) { + fprintf(stderr, + "ECC bytes do not fit in the NAND page, choose a weaker ECC\n"); + return -EINVAL; + } + + return 0; +} + +int main(int argc, char **argv) +{ + struct image_info info; + + memset(&info, 0, sizeof(info)); + /* + * Process user arguments + */ + for (;;) { + int option_index = 0; + char *endptr = NULL; + static const struct option long_options[] = { + {"help", no_argument, 0, 'h'}, + {"ecc", required_argument, 0, 'c'}, + {"page", required_argument, 0, 'p'}, + {"oob", required_argument, 0, 'o'}, + {"usable", required_argument, 0, 'u'}, + {"eraseblock", required_argument, 0, 'e'}, + {"boot0", no_argument, 0, 'b'}, + {"scramble", no_argument, 0, 's'}, + {"address", required_argument, 0, 'a'}, + {0, 0, 0, 0}, + }; + + int c = getopt_long(argc, argv, "c:p:o:u:e:ba:sh", + long_options, &option_index); + if (c == EOF) + break; + + switch (c) { + case 'h': + display_help(0); + break; + case 's': + info.scramble = 1; + break; + case 'c': + info.ecc_strength = strtol(optarg, &endptr, 0); + if (endptr || *endptr == '/') + info.ecc_step_size = strtol(endptr + 1, NULL, 0); + break; + case 'p': + info.page_size = strtol(optarg, NULL, 0); + break; + case 'o': + info.oob_size = strtol(optarg, NULL, 0); + break; + case 'u': + info.usable_page_size = strtol(optarg, NULL, 0); + break; + case 'e': + info.eraseblock_size = strtol(optarg, NULL, 0); + break; + case 'b': + info.boot0 = 1; + break; + case 'a': + info.offset = strtoull(optarg, NULL, 0); + break; + case '?': + display_help(-1); + break; + } + } + + if ((argc - optind) != 2) + display_help(-1); + + info.source = argv[optind]; + info.dest = argv[optind + 1]; + + if (!info.boot0) { + info.usable_page_size = info.page_size; + } else if (!info.usable_page_size) { + if (info.page_size > 8192) + info.usable_page_size = 8192; + else if (info.page_size > 4096) + info.usable_page_size = 4096; + else + info.usable_page_size = 1024; + } + + if (check_image_info(&info)) + display_help(-1); + + return create_image(&info); +}

On Tue, 8 Nov 2016 17:21:14 +0100 Maxime Ripard maxime.ripard@free-electrons.com wrote:
This program generates raw SPL images that can be flashed on the NAND with the ECC and randomizer properly set up.
Maybe you should mention that this file has been copied from the sunxi-tools project.
Otherwise,
Acked-by: Boris Brezillon boris.brezillon@free-electrons.com
Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com
tools/.gitignore | 1 +- tools/Makefile | 1 +- tools/sunxi-spl-image-builder.c | 1113 ++++++++++++++++++++++++++++++++- 3 files changed, 1115 insertions(+), 0 deletions(-) create mode 100644 tools/sunxi-spl-image-builder.c
diff --git a/tools/.gitignore b/tools/.gitignore index cb1e722d4575..16574467544c 100644 --- a/tools/.gitignore +++ b/tools/.gitignore @@ -15,6 +15,7 @@ /mkexynosspl /mxsboot /mksunxiboot +/sunxi-spl-image-builder /ncb /proftool /relocate-rela diff --git a/tools/Makefile b/tools/Makefile index 400588cf0f5c..dfeeb23484ce 100644 --- a/tools/Makefile +++ b/tools/Makefile @@ -171,6 +171,7 @@ hostprogs-$(CONFIG_MX28) += mxsboot HOSTCFLAGS_mxsboot.o := -pedantic
hostprogs-$(CONFIG_ARCH_SUNXI) += mksunxiboot +hostprogs-$(CONFIG_ARCH_SUNXI) += sunxi-spl-image-builder
hostprogs-$(CONFIG_NETCONSOLE) += ncb hostprogs-$(CONFIG_SHA1_CHECK_UB_IMG) += ubsha1 diff --git a/tools/sunxi-spl-image-builder.c b/tools/sunxi-spl-image-builder.c new file mode 100644 index 000000000000..0f915eb2bdf5 --- /dev/null +++ b/tools/sunxi-spl-image-builder.c @@ -0,0 +1,1113 @@ +/*
- Generic binary BCH encoding/decoding library
- This program is free software; you can redistribute it and/or modify it
- under the terms of the GNU General Public License version 2 as published by
- the Free Software Foundation.
- This program is distributed in the hope that it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc., 51
- Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- For the BCH implementation:
- Copyright © 2011 Parrot S.A.
- Author: Ivan Djelic ivan.djelic@parrot.com
- See also:
- For the randomizer and image builder implementation:
- Copyright © 2016 NextThing Co.
- Copyright © 2016 Free Electrons
- Author: Boris Brezillon boris.brezillon@free-electrons.com
- */
+#include <stdint.h> +#include <stdlib.h> +#include <string.h> +#include <stdio.h> +#include <linux/kernel.h> +#include <linux/errno.h> +#include <asm/byteorder.h> +#include <endian.h> +#include <getopt.h> +#include <version.h>
+#if defined(CONFIG_BCH_CONST_PARAMS) +#define GF_M(_p) (CONFIG_BCH_CONST_M) +#define GF_T(_p) (CONFIG_BCH_CONST_T) +#define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1) +#else +#define GF_M(_p) ((_p)->m) +#define GF_T(_p) ((_p)->t) +#define GF_N(_p) ((_p)->n) +#endif
+#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
+#define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32) +#define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
+#ifndef dbg +#define dbg(_fmt, args...) do {} while (0) +#endif
+#define cpu_to_be32 htobe32 +#define kfree free +#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
+#define BCH_PRIMITIVE_POLY 0x5803
+struct image_info {
- int ecc_strength;
- int ecc_step_size;
- int page_size;
- int oob_size;
- int usable_page_size;
- int eraseblock_size;
- int scramble;
- int boot0;
- off_t offset;
- const char *source;
- const char *dest;
+};
+/**
- struct bch_control - BCH control structure
- @m: Galois field order
- @n: maximum codeword size in bits (= 2^m-1)
- @t: error correction capability in bits
- @ecc_bits: ecc exact size in bits, i.e. generator polynomial degree (<=m*t)
- @ecc_bytes: ecc max size (m*t bits) in bytes
- @a_pow_tab: Galois field GF(2^m) exponentiation lookup table
- @a_log_tab: Galois field GF(2^m) log lookup table
- @mod8_tab: remainder generator polynomial lookup tables
- @ecc_buf: ecc parity words buffer
- @ecc_buf2: ecc parity words buffer
- @xi_tab: GF(2^m) base for solving degree 2 polynomial roots
- @syn: syndrome buffer
- @cache: log-based polynomial representation buffer
- @elp: error locator polynomial
- @poly_2t: temporary polynomials of degree 2t
- */
+struct bch_control {
- unsigned int m;
- unsigned int n;
- unsigned int t;
- unsigned int ecc_bits;
- unsigned int ecc_bytes;
+/* private: */
- uint16_t *a_pow_tab;
- uint16_t *a_log_tab;
- uint32_t *mod8_tab;
- uint32_t *ecc_buf;
- uint32_t *ecc_buf2;
- unsigned int *xi_tab;
- unsigned int *syn;
- int *cache;
- struct gf_poly *elp;
- struct gf_poly *poly_2t[4];
+};
+static int fls(int x) +{
- int r = 32;
- if (!x)
return 0;
- if (!(x & 0xffff0000u)) {
x <<= 16;
r -= 16;
- }
- if (!(x & 0xff000000u)) {
x <<= 8;
r -= 8;
- }
- if (!(x & 0xf0000000u)) {
x <<= 4;
r -= 4;
- }
- if (!(x & 0xc0000000u)) {
x <<= 2;
r -= 2;
- }
- if (!(x & 0x80000000u)) {
x <<= 1;
r -= 1;
- }
- return r;
+}
+/*
- represent a polynomial over GF(2^m)
- */
+struct gf_poly {
- unsigned int deg; /* polynomial degree */
- unsigned int c[0]; /* polynomial terms */
+};
+/* given its degree, compute a polynomial size in bytes */ +#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
+/* polynomial of degree 1 */ +struct gf_poly_deg1 {
- struct gf_poly poly;
- unsigned int c[2];
+};
+/*
- same as encode_bch(), but process input data one byte at a time
- */
+static void encode_bch_unaligned(struct bch_control *bch,
const unsigned char *data, unsigned int len,
uint32_t *ecc)
+{
- int i;
- const uint32_t *p;
- const int l = BCH_ECC_WORDS(bch)-1;
- while (len--) {
p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff);
for (i = 0; i < l; i++)
ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
ecc[l] = (ecc[l] << 8)^(*p);
- }
+}
+/*
- convert ecc bytes to aligned, zero-padded 32-bit ecc words
- */
+static void load_ecc8(struct bch_control *bch, uint32_t *dst,
const uint8_t *src)
+{
- uint8_t pad[4] = {0, 0, 0, 0};
- unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
- for (i = 0; i < nwords; i++, src += 4)
dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3];
- memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
- dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3];
+}
+/*
- convert 32-bit ecc words to ecc bytes
- */
+static void store_ecc8(struct bch_control *bch, uint8_t *dst,
const uint32_t *src)
+{
- uint8_t pad[4];
- unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
- for (i = 0; i < nwords; i++) {
*dst++ = (src[i] >> 24);
*dst++ = (src[i] >> 16) & 0xff;
*dst++ = (src[i] >> 8) & 0xff;
*dst++ = (src[i] >> 0) & 0xff;
- }
- pad[0] = (src[nwords] >> 24);
- pad[1] = (src[nwords] >> 16) & 0xff;
- pad[2] = (src[nwords] >> 8) & 0xff;
- pad[3] = (src[nwords] >> 0) & 0xff;
- memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
+}
+/**
- encode_bch - calculate BCH ecc parity of data
- @bch: BCH control structure
- @data: data to encode
- @len: data length in bytes
- @ecc: ecc parity data, must be initialized by caller
- The @ecc parity array is used both as input and output parameter, in order to
- allow incremental computations. It should be of the size indicated by member
- @ecc_bytes of @bch, and should be initialized to 0 before the first call.
- The exact number of computed ecc parity bits is given by member @ecc_bits of
- @bch; it may be less than m*t for large values of t.
- */
+static void encode_bch(struct bch_control *bch, const uint8_t *data,
unsigned int len, uint8_t *ecc)
+{
- const unsigned int l = BCH_ECC_WORDS(bch)-1;
- unsigned int i, mlen;
- unsigned long m;
- uint32_t w, r[l+1];
- const uint32_t * const tab0 = bch->mod8_tab;
- const uint32_t * const tab1 = tab0 + 256*(l+1);
- const uint32_t * const tab2 = tab1 + 256*(l+1);
- const uint32_t * const tab3 = tab2 + 256*(l+1);
- const uint32_t *pdata, *p0, *p1, *p2, *p3;
- if (ecc) {
/* load ecc parity bytes into internal 32-bit buffer */
load_ecc8(bch, bch->ecc_buf, ecc);
- } else {
memset(bch->ecc_buf, 0, sizeof(r));
- }
- /* process first unaligned data bytes */
- m = ((uintptr_t)data) & 3;
- if (m) {
mlen = (len < (4-m)) ? len : 4-m;
encode_bch_unaligned(bch, data, mlen, bch->ecc_buf);
data += mlen;
len -= mlen;
- }
- /* process 32-bit aligned data words */
- pdata = (uint32_t *)data;
- mlen = len/4;
- data += 4*mlen;
- len -= 4*mlen;
- memcpy(r, bch->ecc_buf, sizeof(r));
- /*
* split each 32-bit word into 4 polynomials of weight 8 as follows:
*
* 31 ...24 23 ...16 15 ... 8 7 ... 0
* xxxxxxxx yyyyyyyy zzzzzzzz tttttttt
* tttttttt mod g = r0 (precomputed)
* zzzzzzzz 00000000 mod g = r1 (precomputed)
* yyyyyyyy 00000000 00000000 mod g = r2 (precomputed)
* xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed)
* xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3
*/
- while (mlen--) {
/* input data is read in big-endian format */
w = r[0]^cpu_to_be32(*pdata++);
p0 = tab0 + (l+1)*((w >> 0) & 0xff);
p1 = tab1 + (l+1)*((w >> 8) & 0xff);
p2 = tab2 + (l+1)*((w >> 16) & 0xff);
p3 = tab3 + (l+1)*((w >> 24) & 0xff);
for (i = 0; i < l; i++)
r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
r[l] = p0[l]^p1[l]^p2[l]^p3[l];
- }
- memcpy(bch->ecc_buf, r, sizeof(r));
- /* process last unaligned bytes */
- if (len)
encode_bch_unaligned(bch, data, len, bch->ecc_buf);
- /* store ecc parity bytes into original parity buffer */
- if (ecc)
store_ecc8(bch, ecc, bch->ecc_buf);
+}
+static inline int modulo(struct bch_control *bch, unsigned int v) +{
- const unsigned int n = GF_N(bch);
- while (v >= n) {
v -= n;
v = (v & n) + (v >> GF_M(bch));
- }
- return v;
+}
+/*
- shorter and faster modulo function, only works when v < 2N.
- */
+static inline int mod_s(struct bch_control *bch, unsigned int v) +{
- const unsigned int n = GF_N(bch);
- return (v < n) ? v : v-n;
+}
+static inline int deg(unsigned int poly) +{
- /* polynomial degree is the most-significant bit index */
- return fls(poly)-1;
+}
+/* Galois field basic operations: multiply, divide, inverse, etc. */
+static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
unsigned int b)
+{
- return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
bch->a_log_tab[b])] : 0;
+}
+static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a) +{
- return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
+}
+static inline unsigned int a_pow(struct bch_control *bch, int i) +{
- return bch->a_pow_tab[modulo(bch, i)];
+}
+static inline int a_log(struct bch_control *bch, unsigned int x) +{
- return bch->a_log_tab[x];
+}
+/*
- generate Galois field lookup tables
- */
+static int build_gf_tables(struct bch_control *bch, unsigned int poly) +{
- unsigned int i, x = 1;
- const unsigned int k = 1 << deg(poly);
- /* primitive polynomial must be of degree m */
- if (k != (1u << GF_M(bch)))
return -1;
- for (i = 0; i < GF_N(bch); i++) {
bch->a_pow_tab[i] = x;
bch->a_log_tab[x] = i;
if (i && (x == 1))
/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
return -1;
x <<= 1;
if (x & k)
x ^= poly;
- }
- bch->a_pow_tab[GF_N(bch)] = 1;
- bch->a_log_tab[0] = 0;
- return 0;
+}
+/*
- compute generator polynomial remainder tables for fast encoding
- */
+static void build_mod8_tables(struct bch_control *bch, const uint32_t *g) +{
- int i, j, b, d;
- uint32_t data, hi, lo, *tab;
- const int l = BCH_ECC_WORDS(bch);
- const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
- const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
- memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
- for (i = 0; i < 256; i++) {
/* p(X)=i is a small polynomial of weight <= 8 */
for (b = 0; b < 4; b++) {
/* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
tab = bch->mod8_tab + (b*256+i)*l;
data = i << (8*b);
while (data) {
d = deg(data);
/* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
data ^= g[0] >> (31-d);
for (j = 0; j < ecclen; j++) {
hi = (d < 31) ? g[j] << (d+1) : 0;
lo = (j+1 < plen) ?
g[j+1] >> (31-d) : 0;
tab[j] ^= hi|lo;
}
}
}
- }
+}
+/*
- build a base for factoring degree 2 polynomials
- */
+static int build_deg2_base(struct bch_control *bch) +{
- const int m = GF_M(bch);
- int i, j, r;
- unsigned int sum, x, y, remaining, ak = 0, xi[m];
- /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
- for (i = 0; i < m; i++) {
for (j = 0, sum = 0; j < m; j++)
sum ^= a_pow(bch, i*(1 << j));
if (sum) {
ak = bch->a_pow_tab[i];
break;
}
- }
- /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
- remaining = m;
- memset(xi, 0, sizeof(xi));
- for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
y = gf_sqr(bch, x)^x;
for (i = 0; i < 2; i++) {
r = a_log(bch, y);
if (y && (r < m) && !xi[r]) {
bch->xi_tab[r] = x;
xi[r] = 1;
remaining--;
dbg("x%d = %x\n", r, x);
break;
}
y ^= ak;
}
- }
- /* should not happen but check anyway */
- return remaining ? -1 : 0;
+}
+static void *bch_alloc(size_t size, int *err) +{
- void *ptr;
- ptr = malloc(size);
- if (ptr == NULL)
*err = 1;
- return ptr;
+}
+/*
- compute generator polynomial for given (m,t) parameters.
- */
+static uint32_t *compute_generator_polynomial(struct bch_control *bch) +{
- const unsigned int m = GF_M(bch);
- const unsigned int t = GF_T(bch);
- int n, err = 0;
- unsigned int i, j, nbits, r, word, *roots;
- struct gf_poly *g;
- uint32_t *genpoly;
- g = bch_alloc(GF_POLY_SZ(m*t), &err);
- roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
- genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
- if (err) {
kfree(genpoly);
genpoly = NULL;
goto finish;
- }
- /* enumerate all roots of g(X) */
- memset(roots , 0, (bch->n+1)*sizeof(*roots));
- for (i = 0; i < t; i++) {
for (j = 0, r = 2*i+1; j < m; j++) {
roots[r] = 1;
r = mod_s(bch, 2*r);
}
- }
- /* build generator polynomial g(X) */
- g->deg = 0;
- g->c[0] = 1;
- for (i = 0; i < GF_N(bch); i++) {
if (roots[i]) {
/* multiply g(X) by (X+root) */
r = bch->a_pow_tab[i];
g->c[g->deg+1] = 1;
for (j = g->deg; j > 0; j--)
g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
g->c[0] = gf_mul(bch, g->c[0], r);
g->deg++;
}
- }
- /* store left-justified binary representation of g(X) */
- n = g->deg+1;
- i = 0;
- while (n > 0) {
nbits = (n > 32) ? 32 : n;
for (j = 0, word = 0; j < nbits; j++) {
if (g->c[n-1-j])
word |= 1u << (31-j);
}
genpoly[i++] = word;
n -= nbits;
- }
- bch->ecc_bits = g->deg;
+finish:
- kfree(g);
- kfree(roots);
- return genpoly;
+}
+/**
- free_bch - free the BCH control structure
- @bch: BCH control structure to release
- */
+static void free_bch(struct bch_control *bch) +{
- unsigned int i;
- if (bch) {
kfree(bch->a_pow_tab);
kfree(bch->a_log_tab);
kfree(bch->mod8_tab);
kfree(bch->ecc_buf);
kfree(bch->ecc_buf2);
kfree(bch->xi_tab);
kfree(bch->syn);
kfree(bch->cache);
kfree(bch->elp);
for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
kfree(bch->poly_2t[i]);
kfree(bch);
- }
+}
+/**
- init_bch - initialize a BCH encoder/decoder
- @m: Galois field order, should be in the range 5-15
- @t: maximum error correction capability, in bits
- @prim_poly: user-provided primitive polynomial (or 0 to use default)
- Returns:
- a newly allocated BCH control structure if successful, NULL otherwise
- This initialization can take some time, as lookup tables are built for fast
- encoding/decoding; make sure not to call this function from a time critical
- path. Usually, init_bch() should be called on module/driver init and
- free_bch() should be called to release memory on exit.
- You may provide your own primitive polynomial of degree @m in argument
- @prim_poly, or let init_bch() use its default polynomial.
- Once init_bch() has successfully returned a pointer to a newly allocated
- BCH control structure, ecc length in bytes is given by member @ecc_bytes of
- the structure.
- */
+static struct bch_control *init_bch(int m, int t, unsigned int prim_poly) +{
- int err = 0;
- unsigned int i, words;
- uint32_t *genpoly;
- struct bch_control *bch = NULL;
- const int min_m = 5;
- const int max_m = 15;
- /* default primitive polynomials */
- static const unsigned int prim_poly_tab[] = {
0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
0x402b, 0x8003,
- };
+#if defined(CONFIG_BCH_CONST_PARAMS)
- if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
printk(KERN_ERR "bch encoder/decoder was configured to support "
"parameters m=%d, t=%d only!\n",
CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
goto fail;
- }
+#endif
- if ((m < min_m) || (m > max_m))
/*
* values of m greater than 15 are not currently supported;
* supporting m > 15 would require changing table base type
* (uint16_t) and a small patch in matrix transposition
*/
goto fail;
- /* sanity checks */
- if ((t < 1) || (m*t >= ((1 << m)-1)))
/* invalid t value */
goto fail;
- /* select a primitive polynomial for generating GF(2^m) */
- if (prim_poly == 0)
prim_poly = prim_poly_tab[m-min_m];
- bch = malloc(sizeof(*bch));
- if (bch == NULL)
goto fail;
- memset(bch, 0, sizeof(*bch));
- bch->m = m;
- bch->t = t;
- bch->n = (1 << m)-1;
- words = DIV_ROUND_UP(m*t, 32);
- bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
- bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
- bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
- bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
- bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
- bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
- bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err);
- bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err);
- bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err);
- bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
- for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
- if (err)
goto fail;
- err = build_gf_tables(bch, prim_poly);
- if (err)
goto fail;
- /* use generator polynomial for computing encoding tables */
- genpoly = compute_generator_polynomial(bch);
- if (genpoly == NULL)
goto fail;
- build_mod8_tables(bch, genpoly);
- kfree(genpoly);
- err = build_deg2_base(bch);
- if (err)
goto fail;
- return bch;
+fail:
- free_bch(bch);
- return NULL;
+}
+static void swap_bits(uint8_t *buf, int len) +{
- int i, j;
- for (j = 0; j < len; j++) {
uint8_t byte = buf[j];
buf[j] = 0;
for (i = 0; i < 8; i++) {
if (byte & (1 << i))
buf[j] |= (1 << (7 - i));
}
- }
+}
+static uint16_t lfsr_step(uint16_t state, int count) +{
- state &= 0x7fff;
- while (count--)
state = ((state >> 1) |
((((state >> 0) ^ (state >> 1)) & 1) << 14)) & 0x7fff;
- return state;
+}
+static uint16_t default_scrambler_seeds[] = {
- 0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72,
- 0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436,
- 0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d,
- 0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130,
- 0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56,
- 0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55,
- 0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb,
- 0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17,
- 0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62,
- 0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064,
- 0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126,
- 0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e,
- 0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3,
- 0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b,
- 0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d,
- 0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db,
+};
+static uint16_t brom_scrambler_seeds[] = { 0x4a80 };
+static void scramble(const struct image_info *info,
int page, uint8_t *data, int datalen)
+{
- uint16_t state;
- int i;
- /* Boot0 is always scrambled no matter the command line option. */
- if (info->boot0) {
state = brom_scrambler_seeds[0];
- } else {
unsigned seedmod = info->eraseblock_size / info->page_size;
/* Bail out earlier if the user didn't ask for scrambling. */
if (!info->scramble)
return;
if (seedmod > ARRAY_SIZE(default_scrambler_seeds))
seedmod = ARRAY_SIZE(default_scrambler_seeds);
state = default_scrambler_seeds[page % seedmod];
- }
- /* Prepare the initial state... */
- state = lfsr_step(state, 15);
- /* and start scrambling data. */
- for (i = 0; i < datalen; i++) {
data[i] ^= state;
state = lfsr_step(state, 8);
- }
+}
+static int write_page(const struct image_info *info, uint8_t *buffer,
FILE *src, FILE *rnd, FILE *dst,
struct bch_control *bch, int page)
+{
- int steps = info->usable_page_size / info->ecc_step_size;
- int eccbytes = DIV_ROUND_UP(info->ecc_strength * 14, 8);
- off_t pos = ftell(dst);
- size_t pad, cnt;
- int i;
- if (eccbytes % 2)
eccbytes++;
- memset(buffer, 0xff, info->page_size + info->oob_size);
- cnt = fread(buffer, 1, info->usable_page_size, src);
- if (!cnt) {
if (!feof(src)) {
fprintf(stderr,
"Failed to read data from the source\n");
return -1;
} else {
return 0;
}
- }
- fwrite(buffer, info->page_size + info->oob_size, 1, dst);
- for (i = 0; i < info->usable_page_size; i++) {
if (buffer[i] != 0xff)
break;
- }
- /* We leave empty pages at 0xff. */
- if (i == info->usable_page_size)
return 0;
- /* Restore the source pointer to read it again. */
- fseek(src, -cnt, SEEK_CUR);
- /* Randomize unused space if scrambling is required. */
- if (info->scramble) {
int offs;
if (info->boot0) {
offs = steps * (info->ecc_step_size + eccbytes + 4);
cnt = info->page_size + info->oob_size - offs;
fread(buffer + offs, 1, cnt, rnd);
} else {
offs = info->page_size + (steps * (eccbytes + 4));
cnt = info->page_size + info->oob_size - offs;
memset(buffer + offs, 0xff, cnt);
scramble(info, page, buffer + offs, cnt);
}
fseek(dst, pos + offs, SEEK_SET);
fwrite(buffer + offs, cnt, 1, dst);
- }
- for (i = 0; i < steps; i++) {
int ecc_offs, data_offs;
uint8_t *ecc;
memset(buffer, 0xff, info->ecc_step_size + eccbytes + 4);
ecc = buffer + info->ecc_step_size + 4;
if (info->boot0) {
data_offs = i * (info->ecc_step_size + eccbytes + 4);
ecc_offs = data_offs + info->ecc_step_size + 4;
} else {
data_offs = i * info->ecc_step_size;
ecc_offs = info->page_size + 4 + (i * (eccbytes + 4));
}
cnt = fread(buffer, 1, info->ecc_step_size, src);
if (!cnt && !feof(src)) {
fprintf(stderr,
"Failed to read data from the source\n");
return -1;
}
pad = info->ecc_step_size - cnt;
if (pad) {
if (info->scramble && info->boot0)
fread(buffer + cnt, 1, pad, rnd);
else
memset(buffer + cnt, 0xff, pad);
}
memset(ecc, 0, eccbytes);
swap_bits(buffer, info->ecc_step_size + 4);
encode_bch(bch, buffer, info->ecc_step_size + 4, ecc);
swap_bits(buffer, info->ecc_step_size + 4);
swap_bits(ecc, eccbytes);
scramble(info, page, buffer, info->ecc_step_size + 4 + eccbytes);
fseek(dst, pos + data_offs, SEEK_SET);
fwrite(buffer, info->ecc_step_size, 1, dst);
fseek(dst, pos + ecc_offs - 4, SEEK_SET);
fwrite(ecc - 4, eccbytes + 4, 1, dst);
- }
- /* Fix BBM. */
- fseek(dst, pos + info->page_size, SEEK_SET);
- memset(buffer, 0xff, 2);
- fwrite(buffer, 2, 1, dst);
- /* Make dst pointer point to the next page. */
- fseek(dst, pos + info->page_size + info->oob_size, SEEK_SET);
- return 0;
+}
+static int create_image(const struct image_info *info) +{
- off_t page = info->offset / info->page_size;
- struct bch_control *bch;
- FILE *src, *dst, *rnd;
- uint8_t *buffer;
- bch = init_bch(14, info->ecc_strength, BCH_PRIMITIVE_POLY);
- if (!bch) {
fprintf(stderr, "Failed to init the BCH engine\n");
return -1;
- }
- buffer = malloc(info->page_size + info->oob_size);
- if (!buffer) {
fprintf(stderr, "Failed to allocate the NAND page buffer\n");
return -1;
- }
- memset(buffer, 0xff, info->page_size + info->oob_size);
- src = fopen(info->source, "r");
- if (!src) {
fprintf(stderr, "Failed to open source file (%s)\n",
info->source);
return -1;
- }
- dst = fopen(info->dest, "w");
- if (!dst) {
fprintf(stderr, "Failed to open dest file (%s)\n", info->dest);
return -1;
- }
- rnd = fopen("/dev/urandom", "r");
- if (!rnd) {
fprintf(stderr, "Failed to open /dev/urandom\n");
return -1;
- }
- while (!feof(src)) {
int ret;
ret = write_page(info, buffer, src, rnd, dst, bch, page++);
if (ret)
return ret;
- }
- return 0;
+}
+static void display_help(int status) +{
- fprintf(status == EXIT_SUCCESS ? stdout : stderr,
"sunxi-nand-image-builder %s\n"
"\n"
"Usage: sunxi-nand-image-builder [OPTIONS] source-image output-image\n"
"\n"
"Creates a raw NAND image that can be read by the sunxi NAND controller.\n"
"\n"
"-h --help Display this help and exit\n"
"-c <str>/<step> --ecc=<str>/<step> ECC config (strength/step-size)\n"
"-p <size> --page=<size> Page size\n"
"-o <size> --oob=<size> OOB size\n"
"-u <size> --usable=<size> Usable page size\n"
"-e <size> --eraseblock=<size> Erase block size\n"
"-b --boot0 Build a boot0 image.\n"
"-s --scramble Scramble data\n"
"-a <offset> --address=<offset> Where the image will be programmed.\n"
"\n"
"Notes:\n"
"All the information you need to pass to this tool should be part of\n"
"the NAND datasheet.\n"
"\n"
"The NAND controller only supports the following ECC configs\n"
" Valid ECC strengths: 16, 24, 28, 32, 40, 48, 56, 60 and 64\n"
" Valid ECC step size: 512 and 1024\n"
"\n"
"If you are building a boot0 image, you'll have specify extra options.\n"
"These options should be chosen based on the layouts described here:\n"
" http://linux-sunxi.org/NAND#More_information_on_BROM_NAND\n"
"\n"
" --usable should be assigned the 'Hardware page' value\n"
" --ecc should be assigned the 'ECC capacity'/'ECC page' values\n"
" --usable should be smaller than --page\n"
"\n"
"The --address option is only required for non-boot0 images that are \n"
"meant to be programmed at a non eraseblock aligned offset.\n"
"\n"
"Examples:\n"
" The H27UCG8T2BTR-BC NAND exposes\n"
" * 16k pages\n"
" * 1280 OOB bytes per page\n"
" * 4M eraseblocks\n"
" * requires data scrambling\n"
" * expects a minimum ECC of 40bits/1024bytes\n"
"\n"
" A normal image can be generated with\n"
" sunxi-nand-image-builder -p 16384 -o 1280 -e 0x400000 -s -c 40/1024\n"
" A boot0 image can be generated with\n"
" sunxi-nand-image-builder -p 16384 -o 1280 -e 0x400000 -s -b -u 4096 -c 64/1024\n",
PLAIN_VERSION);
- exit(status);
+}
+static int check_image_info(struct image_info *info) +{
- static int valid_ecc_strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
- int eccbytes, eccsteps;
- unsigned i;
- if (!info->page_size) {
fprintf(stderr, "--page is missing\n");
return -EINVAL;
- }
- if (!info->page_size) {
fprintf(stderr, "--oob is missing\n");
return -EINVAL;
- }
- if (!info->eraseblock_size) {
fprintf(stderr, "--eraseblock is missing\n");
return -EINVAL;
- }
- if (info->ecc_step_size != 512 && info->ecc_step_size != 1024) {
fprintf(stderr, "Invalid ECC step argument: %d\n",
info->ecc_step_size);
return -EINVAL;
- }
- for (i = 0; i < ARRAY_SIZE(valid_ecc_strengths); i++) {
if (valid_ecc_strengths[i] == info->ecc_strength)
break;
- }
- if (i == ARRAY_SIZE(valid_ecc_strengths)) {
fprintf(stderr, "Invalid ECC strength argument: %d\n",
info->ecc_strength);
return -EINVAL;
- }
- eccbytes = DIV_ROUND_UP(info->ecc_strength * 14, 8);
- if (eccbytes % 2)
eccbytes++;
- eccbytes += 4;
- eccsteps = info->usable_page_size / info->ecc_step_size;
- if (info->page_size + info->oob_size <
info->usable_page_size + (eccsteps * eccbytes)) {
fprintf(stderr,
"ECC bytes do not fit in the NAND page, choose a weaker ECC\n");
return -EINVAL;
- }
- return 0;
+}
+int main(int argc, char **argv) +{
- struct image_info info;
- memset(&info, 0, sizeof(info));
- /*
* Process user arguments
*/
- for (;;) {
int option_index = 0;
char *endptr = NULL;
static const struct option long_options[] = {
{"help", no_argument, 0, 'h'},
{"ecc", required_argument, 0, 'c'},
{"page", required_argument, 0, 'p'},
{"oob", required_argument, 0, 'o'},
{"usable", required_argument, 0, 'u'},
{"eraseblock", required_argument, 0, 'e'},
{"boot0", no_argument, 0, 'b'},
{"scramble", no_argument, 0, 's'},
{"address", required_argument, 0, 'a'},
{0, 0, 0, 0},
};
int c = getopt_long(argc, argv, "c:p:o:u:e:ba:sh",
long_options, &option_index);
if (c == EOF)
break;
switch (c) {
case 'h':
display_help(0);
break;
case 's':
info.scramble = 1;
break;
case 'c':
info.ecc_strength = strtol(optarg, &endptr, 0);
if (endptr || *endptr == '/')
info.ecc_step_size = strtol(endptr + 1, NULL, 0);
break;
case 'p':
info.page_size = strtol(optarg, NULL, 0);
break;
case 'o':
info.oob_size = strtol(optarg, NULL, 0);
break;
case 'u':
info.usable_page_size = strtol(optarg, NULL, 0);
break;
case 'e':
info.eraseblock_size = strtol(optarg, NULL, 0);
break;
case 'b':
info.boot0 = 1;
break;
case 'a':
info.offset = strtoull(optarg, NULL, 0);
break;
case '?':
display_help(-1);
break;
}
- }
- if ((argc - optind) != 2)
display_help(-1);
- info.source = argv[optind];
- info.dest = argv[optind + 1];
- if (!info.boot0) {
info.usable_page_size = info.page_size;
- } else if (!info.usable_page_size) {
if (info.page_size > 8192)
info.usable_page_size = 8192;
else if (info.page_size > 4096)
info.usable_page_size = 4096;
else
info.usable_page_size = 1024;
- }
- if (check_image_info(&info))
display_help(-1);
- return create_image(&info);
+}

On Tue, Nov 08, 2016 at 05:29:47PM +0100, Boris Brezillon wrote:
On Tue, 8 Nov 2016 17:21:14 +0100 Maxime Ripard maxime.ripard@free-electrons.com wrote:
This program generates raw SPL images that can be flashed on the NAND with the ECC and randomizer properly set up.
Maybe you should mention that this file has been copied from the sunxi-tools project.
Definitely, I've amended my commit log.
Otherwise,
Acked-by: Boris Brezillon boris.brezillon@free-electrons.com
Thanks! Maxime

On Tue, Nov 08, 2016 at 05:21:14PM +0100, Maxime Ripard wrote:
This program generates raw SPL images that can be flashed on the NAND with the ECC and randomizer properly set up.
Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com
[snip]
+++ b/tools/sunxi-spl-image-builder.c @@ -0,0 +1,1113 @@ +/*
- Generic binary BCH encoding/decoding library
OK, but this is also lib/bch.c and re-using lib/ code for tools is a normal best practice. I'd suggest re-factoring this code in sunxi-tools sot that it too borrows lib/bch.c from the kernel (and can re-sync bugfixes if needed). Thanks!

On Fri, Nov 11, 2016 at 11:20:47AM -0500, Tom Rini wrote:
On Tue, Nov 08, 2016 at 05:21:14PM +0100, Maxime Ripard wrote:
This program generates raw SPL images that can be flashed on the NAND with the ECC and randomizer properly set up.
Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com
[snip]
+++ b/tools/sunxi-spl-image-builder.c @@ -0,0 +1,1113 @@ +/*
- Generic binary BCH encoding/decoding library
OK, but this is also lib/bch.c and re-using lib/ code for tools is a normal best practice. I'd suggest re-factoring this code in sunxi-tools sot that it too borrows lib/bch.c from the kernel (and can re-sync bugfixes if needed). Thanks!
I finally figured that out.
It turns out that the driver was doing a modulo by 0. I guess gcc's and our libgcc don't have the same behaviour in this case, but in U-boot's case, the function was simply returning (which is kind of odd).
I'll send a fix for the driver.
Maxime

On Mon, Nov 14, 2016 at 04:20:49PM +0100, Maxime Ripard wrote:
On Fri, Nov 11, 2016 at 11:20:47AM -0500, Tom Rini wrote:
On Tue, Nov 08, 2016 at 05:21:14PM +0100, Maxime Ripard wrote:
This program generates raw SPL images that can be flashed on the NAND with the ECC and randomizer properly set up.
Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com
[snip]
+++ b/tools/sunxi-spl-image-builder.c @@ -0,0 +1,1113 @@ +/*
- Generic binary BCH encoding/decoding library
OK, but this is also lib/bch.c and re-using lib/ code for tools is a normal best practice. I'd suggest re-factoring this code in sunxi-tools sot that it too borrows lib/bch.c from the kernel (and can re-sync bugfixes if needed). Thanks!
I finally figured that out.
It turns out that the driver was doing a modulo by 0. I guess gcc's and our libgcc don't have the same behaviour in this case, but in U-boot's case, the function was simply returning (which is kind of odd).
I'll send a fix for the driver.
So it's something in how lib/bch.c and lib1funcs.S interact? Please CC me on these when fixing whatever side of this it is in the kernel, thanks!

Hi,
On Mon, Nov 14, 2016 at 10:25:27AM -0500, Tom Rini wrote:
On Mon, Nov 14, 2016 at 04:20:49PM +0100, Maxime Ripard wrote:
On Fri, Nov 11, 2016 at 11:20:47AM -0500, Tom Rini wrote:
On Tue, Nov 08, 2016 at 05:21:14PM +0100, Maxime Ripard wrote:
This program generates raw SPL images that can be flashed on the NAND with the ECC and randomizer properly set up.
Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com
[snip]
+++ b/tools/sunxi-spl-image-builder.c @@ -0,0 +1,1113 @@ +/*
- Generic binary BCH encoding/decoding library
OK, but this is also lib/bch.c and re-using lib/ code for tools is a normal best practice. I'd suggest re-factoring this code in sunxi-tools sot that it too borrows lib/bch.c from the kernel (and can re-sync bugfixes if needed). Thanks!
I finally figured that out.
It turns out that the driver was doing a modulo by 0. I guess gcc's and our libgcc don't have the same behaviour in this case, but in U-boot's case, the function was simply returning (which is kind of odd).
I'll send a fix for the driver.
So it's something in how lib/bch.c and lib1funcs.S interact? Please CC me on these when fixing whatever side of this it is in the kernel, thanks!
Hmm, no, sorry, I meant to reply on the cover letter. The issue isn't in lib/bch.c, it was really in our NAND driver. No changes required in the kernel, just an extra patch in this serie :)
Maxime

On Mon, Nov 14, 2016 at 07:58:03PM +0100, Maxime Ripard wrote:
Hi,
On Mon, Nov 14, 2016 at 10:25:27AM -0500, Tom Rini wrote:
On Mon, Nov 14, 2016 at 04:20:49PM +0100, Maxime Ripard wrote:
On Fri, Nov 11, 2016 at 11:20:47AM -0500, Tom Rini wrote:
On Tue, Nov 08, 2016 at 05:21:14PM +0100, Maxime Ripard wrote:
This program generates raw SPL images that can be flashed on the NAND with the ECC and randomizer properly set up.
Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com
[snip]
+++ b/tools/sunxi-spl-image-builder.c @@ -0,0 +1,1113 @@ +/*
- Generic binary BCH encoding/decoding library
OK, but this is also lib/bch.c and re-using lib/ code for tools is a normal best practice. I'd suggest re-factoring this code in sunxi-tools sot that it too borrows lib/bch.c from the kernel (and can re-sync bugfixes if needed). Thanks!
I finally figured that out.
It turns out that the driver was doing a modulo by 0. I guess gcc's and our libgcc don't have the same behaviour in this case, but in U-boot's case, the function was simply returning (which is kind of odd).
I'll send a fix for the driver.
So it's something in how lib/bch.c and lib1funcs.S interact? Please CC me on these when fixing whatever side of this it is in the kernel, thanks!
Hmm, no, sorry, I meant to reply on the cover letter. The issue isn't in lib/bch.c, it was really in our NAND driver. No changes required in the kernel, just an extra patch in this serie :)
Ah-ah! OK, thanks for clarifying.

Hi,
On 08-11-16 17:21, Maxime Ripard wrote:
This program generates raw SPL images that can be flashed on the NAND with the ECC and randomizer properly set up.
Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com
Looks good to me:
Reviewed-by: Hans de Goede hdegoede@redhat.com
Regards,
Hans
tools/.gitignore | 1 +- tools/Makefile | 1 +- tools/sunxi-spl-image-builder.c | 1113 ++++++++++++++++++++++++++++++++- 3 files changed, 1115 insertions(+), 0 deletions(-) create mode 100644 tools/sunxi-spl-image-builder.c
diff --git a/tools/.gitignore b/tools/.gitignore index cb1e722d4575..16574467544c 100644 --- a/tools/.gitignore +++ b/tools/.gitignore @@ -15,6 +15,7 @@ /mkexynosspl /mxsboot /mksunxiboot +/sunxi-spl-image-builder /ncb /proftool /relocate-rela diff --git a/tools/Makefile b/tools/Makefile index 400588cf0f5c..dfeeb23484ce 100644 --- a/tools/Makefile +++ b/tools/Makefile @@ -171,6 +171,7 @@ hostprogs-$(CONFIG_MX28) += mxsboot HOSTCFLAGS_mxsboot.o := -pedantic
hostprogs-$(CONFIG_ARCH_SUNXI) += mksunxiboot +hostprogs-$(CONFIG_ARCH_SUNXI) += sunxi-spl-image-builder
hostprogs-$(CONFIG_NETCONSOLE) += ncb hostprogs-$(CONFIG_SHA1_CHECK_UB_IMG) += ubsha1 diff --git a/tools/sunxi-spl-image-builder.c b/tools/sunxi-spl-image-builder.c new file mode 100644 index 000000000000..0f915eb2bdf5 --- /dev/null +++ b/tools/sunxi-spl-image-builder.c @@ -0,0 +1,1113 @@ +/*
- Generic binary BCH encoding/decoding library
- This program is free software; you can redistribute it and/or modify it
- under the terms of the GNU General Public License version 2 as published by
- the Free Software Foundation.
- This program is distributed in the hope that it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc., 51
- Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- For the BCH implementation:
- Copyright © 2011 Parrot S.A.
- Author: Ivan Djelic ivan.djelic@parrot.com
- See also:
- For the randomizer and image builder implementation:
- Copyright © 2016 NextThing Co.
- Copyright © 2016 Free Electrons
- Author: Boris Brezillon boris.brezillon@free-electrons.com
- */
+#include <stdint.h> +#include <stdlib.h> +#include <string.h> +#include <stdio.h> +#include <linux/kernel.h> +#include <linux/errno.h> +#include <asm/byteorder.h> +#include <endian.h> +#include <getopt.h> +#include <version.h>
+#if defined(CONFIG_BCH_CONST_PARAMS) +#define GF_M(_p) (CONFIG_BCH_CONST_M) +#define GF_T(_p) (CONFIG_BCH_CONST_T) +#define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1) +#else +#define GF_M(_p) ((_p)->m) +#define GF_T(_p) ((_p)->t) +#define GF_N(_p) ((_p)->n) +#endif
+#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
+#define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32) +#define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
+#ifndef dbg +#define dbg(_fmt, args...) do {} while (0) +#endif
+#define cpu_to_be32 htobe32 +#define kfree free +#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
+#define BCH_PRIMITIVE_POLY 0x5803
+struct image_info {
- int ecc_strength;
- int ecc_step_size;
- int page_size;
- int oob_size;
- int usable_page_size;
- int eraseblock_size;
- int scramble;
- int boot0;
- off_t offset;
- const char *source;
- const char *dest;
+};
+/**
- struct bch_control - BCH control structure
- @m: Galois field order
- @n: maximum codeword size in bits (= 2^m-1)
- @t: error correction capability in bits
- @ecc_bits: ecc exact size in bits, i.e. generator polynomial degree (<=m*t)
- @ecc_bytes: ecc max size (m*t bits) in bytes
- @a_pow_tab: Galois field GF(2^m) exponentiation lookup table
- @a_log_tab: Galois field GF(2^m) log lookup table
- @mod8_tab: remainder generator polynomial lookup tables
- @ecc_buf: ecc parity words buffer
- @ecc_buf2: ecc parity words buffer
- @xi_tab: GF(2^m) base for solving degree 2 polynomial roots
- @syn: syndrome buffer
- @cache: log-based polynomial representation buffer
- @elp: error locator polynomial
- @poly_2t: temporary polynomials of degree 2t
- */
+struct bch_control {
- unsigned int m;
- unsigned int n;
- unsigned int t;
- unsigned int ecc_bits;
- unsigned int ecc_bytes;
+/* private: */
- uint16_t *a_pow_tab;
- uint16_t *a_log_tab;
- uint32_t *mod8_tab;
- uint32_t *ecc_buf;
- uint32_t *ecc_buf2;
- unsigned int *xi_tab;
- unsigned int *syn;
- int *cache;
- struct gf_poly *elp;
- struct gf_poly *poly_2t[4];
+};
+static int fls(int x) +{
- int r = 32;
- if (!x)
return 0;
- if (!(x & 0xffff0000u)) {
x <<= 16;
r -= 16;
- }
- if (!(x & 0xff000000u)) {
x <<= 8;
r -= 8;
- }
- if (!(x & 0xf0000000u)) {
x <<= 4;
r -= 4;
- }
- if (!(x & 0xc0000000u)) {
x <<= 2;
r -= 2;
- }
- if (!(x & 0x80000000u)) {
x <<= 1;
r -= 1;
- }
- return r;
+}
+/*
- represent a polynomial over GF(2^m)
- */
+struct gf_poly {
- unsigned int deg; /* polynomial degree */
- unsigned int c[0]; /* polynomial terms */
+};
+/* given its degree, compute a polynomial size in bytes */ +#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
+/* polynomial of degree 1 */ +struct gf_poly_deg1 {
- struct gf_poly poly;
- unsigned int c[2];
+};
+/*
- same as encode_bch(), but process input data one byte at a time
- */
+static void encode_bch_unaligned(struct bch_control *bch,
const unsigned char *data, unsigned int len,
uint32_t *ecc)
+{
- int i;
- const uint32_t *p;
- const int l = BCH_ECC_WORDS(bch)-1;
- while (len--) {
p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff);
for (i = 0; i < l; i++)
ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
ecc[l] = (ecc[l] << 8)^(*p);
- }
+}
+/*
- convert ecc bytes to aligned, zero-padded 32-bit ecc words
- */
+static void load_ecc8(struct bch_control *bch, uint32_t *dst,
const uint8_t *src)
+{
- uint8_t pad[4] = {0, 0, 0, 0};
- unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
- for (i = 0; i < nwords; i++, src += 4)
dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3];
- memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
- dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3];
+}
+/*
- convert 32-bit ecc words to ecc bytes
- */
+static void store_ecc8(struct bch_control *bch, uint8_t *dst,
const uint32_t *src)
+{
- uint8_t pad[4];
- unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
- for (i = 0; i < nwords; i++) {
*dst++ = (src[i] >> 24);
*dst++ = (src[i] >> 16) & 0xff;
*dst++ = (src[i] >> 8) & 0xff;
*dst++ = (src[i] >> 0) & 0xff;
- }
- pad[0] = (src[nwords] >> 24);
- pad[1] = (src[nwords] >> 16) & 0xff;
- pad[2] = (src[nwords] >> 8) & 0xff;
- pad[3] = (src[nwords] >> 0) & 0xff;
- memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
+}
+/**
- encode_bch - calculate BCH ecc parity of data
- @bch: BCH control structure
- @data: data to encode
- @len: data length in bytes
- @ecc: ecc parity data, must be initialized by caller
- The @ecc parity array is used both as input and output parameter, in order to
- allow incremental computations. It should be of the size indicated by member
- @ecc_bytes of @bch, and should be initialized to 0 before the first call.
- The exact number of computed ecc parity bits is given by member @ecc_bits of
- @bch; it may be less than m*t for large values of t.
- */
+static void encode_bch(struct bch_control *bch, const uint8_t *data,
unsigned int len, uint8_t *ecc)
+{
- const unsigned int l = BCH_ECC_WORDS(bch)-1;
- unsigned int i, mlen;
- unsigned long m;
- uint32_t w, r[l+1];
- const uint32_t * const tab0 = bch->mod8_tab;
- const uint32_t * const tab1 = tab0 + 256*(l+1);
- const uint32_t * const tab2 = tab1 + 256*(l+1);
- const uint32_t * const tab3 = tab2 + 256*(l+1);
- const uint32_t *pdata, *p0, *p1, *p2, *p3;
- if (ecc) {
/* load ecc parity bytes into internal 32-bit buffer */
load_ecc8(bch, bch->ecc_buf, ecc);
- } else {
memset(bch->ecc_buf, 0, sizeof(r));
- }
- /* process first unaligned data bytes */
- m = ((uintptr_t)data) & 3;
- if (m) {
mlen = (len < (4-m)) ? len : 4-m;
encode_bch_unaligned(bch, data, mlen, bch->ecc_buf);
data += mlen;
len -= mlen;
- }
- /* process 32-bit aligned data words */
- pdata = (uint32_t *)data;
- mlen = len/4;
- data += 4*mlen;
- len -= 4*mlen;
- memcpy(r, bch->ecc_buf, sizeof(r));
- /*
* split each 32-bit word into 4 polynomials of weight 8 as follows:
*
* 31 ...24 23 ...16 15 ... 8 7 ... 0
* xxxxxxxx yyyyyyyy zzzzzzzz tttttttt
* tttttttt mod g = r0 (precomputed)
* zzzzzzzz 00000000 mod g = r1 (precomputed)
* yyyyyyyy 00000000 00000000 mod g = r2 (precomputed)
* xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed)
* xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3
*/
- while (mlen--) {
/* input data is read in big-endian format */
w = r[0]^cpu_to_be32(*pdata++);
p0 = tab0 + (l+1)*((w >> 0) & 0xff);
p1 = tab1 + (l+1)*((w >> 8) & 0xff);
p2 = tab2 + (l+1)*((w >> 16) & 0xff);
p3 = tab3 + (l+1)*((w >> 24) & 0xff);
for (i = 0; i < l; i++)
r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
r[l] = p0[l]^p1[l]^p2[l]^p3[l];
- }
- memcpy(bch->ecc_buf, r, sizeof(r));
- /* process last unaligned bytes */
- if (len)
encode_bch_unaligned(bch, data, len, bch->ecc_buf);
- /* store ecc parity bytes into original parity buffer */
- if (ecc)
store_ecc8(bch, ecc, bch->ecc_buf);
+}
+static inline int modulo(struct bch_control *bch, unsigned int v) +{
- const unsigned int n = GF_N(bch);
- while (v >= n) {
v -= n;
v = (v & n) + (v >> GF_M(bch));
- }
- return v;
+}
+/*
- shorter and faster modulo function, only works when v < 2N.
- */
+static inline int mod_s(struct bch_control *bch, unsigned int v) +{
- const unsigned int n = GF_N(bch);
- return (v < n) ? v : v-n;
+}
+static inline int deg(unsigned int poly) +{
- /* polynomial degree is the most-significant bit index */
- return fls(poly)-1;
+}
+/* Galois field basic operations: multiply, divide, inverse, etc. */
+static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
unsigned int b)
+{
- return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
bch->a_log_tab[b])] : 0;
+}
+static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a) +{
- return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
+}
+static inline unsigned int a_pow(struct bch_control *bch, int i) +{
- return bch->a_pow_tab[modulo(bch, i)];
+}
+static inline int a_log(struct bch_control *bch, unsigned int x) +{
- return bch->a_log_tab[x];
+}
+/*
- generate Galois field lookup tables
- */
+static int build_gf_tables(struct bch_control *bch, unsigned int poly) +{
- unsigned int i, x = 1;
- const unsigned int k = 1 << deg(poly);
- /* primitive polynomial must be of degree m */
- if (k != (1u << GF_M(bch)))
return -1;
- for (i = 0; i < GF_N(bch); i++) {
bch->a_pow_tab[i] = x;
bch->a_log_tab[x] = i;
if (i && (x == 1))
/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
return -1;
x <<= 1;
if (x & k)
x ^= poly;
- }
- bch->a_pow_tab[GF_N(bch)] = 1;
- bch->a_log_tab[0] = 0;
- return 0;
+}
+/*
- compute generator polynomial remainder tables for fast encoding
- */
+static void build_mod8_tables(struct bch_control *bch, const uint32_t *g) +{
- int i, j, b, d;
- uint32_t data, hi, lo, *tab;
- const int l = BCH_ECC_WORDS(bch);
- const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
- const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
- memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
- for (i = 0; i < 256; i++) {
/* p(X)=i is a small polynomial of weight <= 8 */
for (b = 0; b < 4; b++) {
/* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
tab = bch->mod8_tab + (b*256+i)*l;
data = i << (8*b);
while (data) {
d = deg(data);
/* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
data ^= g[0] >> (31-d);
for (j = 0; j < ecclen; j++) {
hi = (d < 31) ? g[j] << (d+1) : 0;
lo = (j+1 < plen) ?
g[j+1] >> (31-d) : 0;
tab[j] ^= hi|lo;
}
}
}
- }
+}
+/*
- build a base for factoring degree 2 polynomials
- */
+static int build_deg2_base(struct bch_control *bch) +{
- const int m = GF_M(bch);
- int i, j, r;
- unsigned int sum, x, y, remaining, ak = 0, xi[m];
- /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
- for (i = 0; i < m; i++) {
for (j = 0, sum = 0; j < m; j++)
sum ^= a_pow(bch, i*(1 << j));
if (sum) {
ak = bch->a_pow_tab[i];
break;
}
- }
- /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
- remaining = m;
- memset(xi, 0, sizeof(xi));
- for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
y = gf_sqr(bch, x)^x;
for (i = 0; i < 2; i++) {
r = a_log(bch, y);
if (y && (r < m) && !xi[r]) {
bch->xi_tab[r] = x;
xi[r] = 1;
remaining--;
dbg("x%d = %x\n", r, x);
break;
}
y ^= ak;
}
- }
- /* should not happen but check anyway */
- return remaining ? -1 : 0;
+}
+static void *bch_alloc(size_t size, int *err) +{
- void *ptr;
- ptr = malloc(size);
- if (ptr == NULL)
*err = 1;
- return ptr;
+}
+/*
- compute generator polynomial for given (m,t) parameters.
- */
+static uint32_t *compute_generator_polynomial(struct bch_control *bch) +{
- const unsigned int m = GF_M(bch);
- const unsigned int t = GF_T(bch);
- int n, err = 0;
- unsigned int i, j, nbits, r, word, *roots;
- struct gf_poly *g;
- uint32_t *genpoly;
- g = bch_alloc(GF_POLY_SZ(m*t), &err);
- roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
- genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
- if (err) {
kfree(genpoly);
genpoly = NULL;
goto finish;
- }
- /* enumerate all roots of g(X) */
- memset(roots , 0, (bch->n+1)*sizeof(*roots));
- for (i = 0; i < t; i++) {
for (j = 0, r = 2*i+1; j < m; j++) {
roots[r] = 1;
r = mod_s(bch, 2*r);
}
- }
- /* build generator polynomial g(X) */
- g->deg = 0;
- g->c[0] = 1;
- for (i = 0; i < GF_N(bch); i++) {
if (roots[i]) {
/* multiply g(X) by (X+root) */
r = bch->a_pow_tab[i];
g->c[g->deg+1] = 1;
for (j = g->deg; j > 0; j--)
g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
g->c[0] = gf_mul(bch, g->c[0], r);
g->deg++;
}
- }
- /* store left-justified binary representation of g(X) */
- n = g->deg+1;
- i = 0;
- while (n > 0) {
nbits = (n > 32) ? 32 : n;
for (j = 0, word = 0; j < nbits; j++) {
if (g->c[n-1-j])
word |= 1u << (31-j);
}
genpoly[i++] = word;
n -= nbits;
- }
- bch->ecc_bits = g->deg;
+finish:
- kfree(g);
- kfree(roots);
- return genpoly;
+}
+/**
- free_bch - free the BCH control structure
- @bch: BCH control structure to release
- */
+static void free_bch(struct bch_control *bch) +{
- unsigned int i;
- if (bch) {
kfree(bch->a_pow_tab);
kfree(bch->a_log_tab);
kfree(bch->mod8_tab);
kfree(bch->ecc_buf);
kfree(bch->ecc_buf2);
kfree(bch->xi_tab);
kfree(bch->syn);
kfree(bch->cache);
kfree(bch->elp);
for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
kfree(bch->poly_2t[i]);
kfree(bch);
- }
+}
+/**
- init_bch - initialize a BCH encoder/decoder
- @m: Galois field order, should be in the range 5-15
- @t: maximum error correction capability, in bits
- @prim_poly: user-provided primitive polynomial (or 0 to use default)
- Returns:
- a newly allocated BCH control structure if successful, NULL otherwise
- This initialization can take some time, as lookup tables are built for fast
- encoding/decoding; make sure not to call this function from a time critical
- path. Usually, init_bch() should be called on module/driver init and
- free_bch() should be called to release memory on exit.
- You may provide your own primitive polynomial of degree @m in argument
- @prim_poly, or let init_bch() use its default polynomial.
- Once init_bch() has successfully returned a pointer to a newly allocated
- BCH control structure, ecc length in bytes is given by member @ecc_bytes of
- the structure.
- */
+static struct bch_control *init_bch(int m, int t, unsigned int prim_poly) +{
- int err = 0;
- unsigned int i, words;
- uint32_t *genpoly;
- struct bch_control *bch = NULL;
- const int min_m = 5;
- const int max_m = 15;
- /* default primitive polynomials */
- static const unsigned int prim_poly_tab[] = {
0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
0x402b, 0x8003,
- };
+#if defined(CONFIG_BCH_CONST_PARAMS)
- if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
printk(KERN_ERR "bch encoder/decoder was configured to support "
"parameters m=%d, t=%d only!\n",
CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
goto fail;
- }
+#endif
- if ((m < min_m) || (m > max_m))
/*
* values of m greater than 15 are not currently supported;
* supporting m > 15 would require changing table base type
* (uint16_t) and a small patch in matrix transposition
*/
goto fail;
- /* sanity checks */
- if ((t < 1) || (m*t >= ((1 << m)-1)))
/* invalid t value */
goto fail;
- /* select a primitive polynomial for generating GF(2^m) */
- if (prim_poly == 0)
prim_poly = prim_poly_tab[m-min_m];
- bch = malloc(sizeof(*bch));
- if (bch == NULL)
goto fail;
- memset(bch, 0, sizeof(*bch));
- bch->m = m;
- bch->t = t;
- bch->n = (1 << m)-1;
- words = DIV_ROUND_UP(m*t, 32);
- bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
- bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
- bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
- bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
- bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
- bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
- bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err);
- bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err);
- bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err);
- bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
- for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
- if (err)
goto fail;
- err = build_gf_tables(bch, prim_poly);
- if (err)
goto fail;
- /* use generator polynomial for computing encoding tables */
- genpoly = compute_generator_polynomial(bch);
- if (genpoly == NULL)
goto fail;
- build_mod8_tables(bch, genpoly);
- kfree(genpoly);
- err = build_deg2_base(bch);
- if (err)
goto fail;
- return bch;
+fail:
- free_bch(bch);
- return NULL;
+}
+static void swap_bits(uint8_t *buf, int len) +{
- int i, j;
- for (j = 0; j < len; j++) {
uint8_t byte = buf[j];
buf[j] = 0;
for (i = 0; i < 8; i++) {
if (byte & (1 << i))
buf[j] |= (1 << (7 - i));
}
- }
+}
+static uint16_t lfsr_step(uint16_t state, int count) +{
- state &= 0x7fff;
- while (count--)
state = ((state >> 1) |
((((state >> 0) ^ (state >> 1)) & 1) << 14)) & 0x7fff;
- return state;
+}
+static uint16_t default_scrambler_seeds[] = {
- 0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72,
- 0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436,
- 0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d,
- 0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130,
- 0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56,
- 0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55,
- 0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb,
- 0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17,
- 0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62,
- 0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064,
- 0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126,
- 0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e,
- 0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3,
- 0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b,
- 0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d,
- 0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db,
+};
+static uint16_t brom_scrambler_seeds[] = { 0x4a80 };
+static void scramble(const struct image_info *info,
int page, uint8_t *data, int datalen)
+{
- uint16_t state;
- int i;
- /* Boot0 is always scrambled no matter the command line option. */
- if (info->boot0) {
state = brom_scrambler_seeds[0];
- } else {
unsigned seedmod = info->eraseblock_size / info->page_size;
/* Bail out earlier if the user didn't ask for scrambling. */
if (!info->scramble)
return;
if (seedmod > ARRAY_SIZE(default_scrambler_seeds))
seedmod = ARRAY_SIZE(default_scrambler_seeds);
state = default_scrambler_seeds[page % seedmod];
- }
- /* Prepare the initial state... */
- state = lfsr_step(state, 15);
- /* and start scrambling data. */
- for (i = 0; i < datalen; i++) {
data[i] ^= state;
state = lfsr_step(state, 8);
- }
+}
+static int write_page(const struct image_info *info, uint8_t *buffer,
FILE *src, FILE *rnd, FILE *dst,
struct bch_control *bch, int page)
+{
- int steps = info->usable_page_size / info->ecc_step_size;
- int eccbytes = DIV_ROUND_UP(info->ecc_strength * 14, 8);
- off_t pos = ftell(dst);
- size_t pad, cnt;
- int i;
- if (eccbytes % 2)
eccbytes++;
- memset(buffer, 0xff, info->page_size + info->oob_size);
- cnt = fread(buffer, 1, info->usable_page_size, src);
- if (!cnt) {
if (!feof(src)) {
fprintf(stderr,
"Failed to read data from the source\n");
return -1;
} else {
return 0;
}
- }
- fwrite(buffer, info->page_size + info->oob_size, 1, dst);
- for (i = 0; i < info->usable_page_size; i++) {
if (buffer[i] != 0xff)
break;
- }
- /* We leave empty pages at 0xff. */
- if (i == info->usable_page_size)
return 0;
- /* Restore the source pointer to read it again. */
- fseek(src, -cnt, SEEK_CUR);
- /* Randomize unused space if scrambling is required. */
- if (info->scramble) {
int offs;
if (info->boot0) {
offs = steps * (info->ecc_step_size + eccbytes + 4);
cnt = info->page_size + info->oob_size - offs;
fread(buffer + offs, 1, cnt, rnd);
} else {
offs = info->page_size + (steps * (eccbytes + 4));
cnt = info->page_size + info->oob_size - offs;
memset(buffer + offs, 0xff, cnt);
scramble(info, page, buffer + offs, cnt);
}
fseek(dst, pos + offs, SEEK_SET);
fwrite(buffer + offs, cnt, 1, dst);
- }
- for (i = 0; i < steps; i++) {
int ecc_offs, data_offs;
uint8_t *ecc;
memset(buffer, 0xff, info->ecc_step_size + eccbytes + 4);
ecc = buffer + info->ecc_step_size + 4;
if (info->boot0) {
data_offs = i * (info->ecc_step_size + eccbytes + 4);
ecc_offs = data_offs + info->ecc_step_size + 4;
} else {
data_offs = i * info->ecc_step_size;
ecc_offs = info->page_size + 4 + (i * (eccbytes + 4));
}
cnt = fread(buffer, 1, info->ecc_step_size, src);
if (!cnt && !feof(src)) {
fprintf(stderr,
"Failed to read data from the source\n");
return -1;
}
pad = info->ecc_step_size - cnt;
if (pad) {
if (info->scramble && info->boot0)
fread(buffer + cnt, 1, pad, rnd);
else
memset(buffer + cnt, 0xff, pad);
}
memset(ecc, 0, eccbytes);
swap_bits(buffer, info->ecc_step_size + 4);
encode_bch(bch, buffer, info->ecc_step_size + 4, ecc);
swap_bits(buffer, info->ecc_step_size + 4);
swap_bits(ecc, eccbytes);
scramble(info, page, buffer, info->ecc_step_size + 4 + eccbytes);
fseek(dst, pos + data_offs, SEEK_SET);
fwrite(buffer, info->ecc_step_size, 1, dst);
fseek(dst, pos + ecc_offs - 4, SEEK_SET);
fwrite(ecc - 4, eccbytes + 4, 1, dst);
- }
- /* Fix BBM. */
- fseek(dst, pos + info->page_size, SEEK_SET);
- memset(buffer, 0xff, 2);
- fwrite(buffer, 2, 1, dst);
- /* Make dst pointer point to the next page. */
- fseek(dst, pos + info->page_size + info->oob_size, SEEK_SET);
- return 0;
+}
+static int create_image(const struct image_info *info) +{
- off_t page = info->offset / info->page_size;
- struct bch_control *bch;
- FILE *src, *dst, *rnd;
- uint8_t *buffer;
- bch = init_bch(14, info->ecc_strength, BCH_PRIMITIVE_POLY);
- if (!bch) {
fprintf(stderr, "Failed to init the BCH engine\n");
return -1;
- }
- buffer = malloc(info->page_size + info->oob_size);
- if (!buffer) {
fprintf(stderr, "Failed to allocate the NAND page buffer\n");
return -1;
- }
- memset(buffer, 0xff, info->page_size + info->oob_size);
- src = fopen(info->source, "r");
- if (!src) {
fprintf(stderr, "Failed to open source file (%s)\n",
info->source);
return -1;
- }
- dst = fopen(info->dest, "w");
- if (!dst) {
fprintf(stderr, "Failed to open dest file (%s)\n", info->dest);
return -1;
- }
- rnd = fopen("/dev/urandom", "r");
- if (!rnd) {
fprintf(stderr, "Failed to open /dev/urandom\n");
return -1;
- }
- while (!feof(src)) {
int ret;
ret = write_page(info, buffer, src, rnd, dst, bch, page++);
if (ret)
return ret;
- }
- return 0;
+}
+static void display_help(int status) +{
- fprintf(status == EXIT_SUCCESS ? stdout : stderr,
"sunxi-nand-image-builder %s\n"
"\n"
"Usage: sunxi-nand-image-builder [OPTIONS] source-image output-image\n"
"\n"
"Creates a raw NAND image that can be read by the sunxi NAND controller.\n"
"\n"
"-h --help Display this help and exit\n"
"-c <str>/<step> --ecc=<str>/<step> ECC config (strength/step-size)\n"
"-p <size> --page=<size> Page size\n"
"-o <size> --oob=<size> OOB size\n"
"-u <size> --usable=<size> Usable page size\n"
"-e <size> --eraseblock=<size> Erase block size\n"
"-b --boot0 Build a boot0 image.\n"
"-s --scramble Scramble data\n"
"-a <offset> --address=<offset> Where the image will be programmed.\n"
"\n"
"Notes:\n"
"All the information you need to pass to this tool should be part of\n"
"the NAND datasheet.\n"
"\n"
"The NAND controller only supports the following ECC configs\n"
" Valid ECC strengths: 16, 24, 28, 32, 40, 48, 56, 60 and 64\n"
" Valid ECC step size: 512 and 1024\n"
"\n"
"If you are building a boot0 image, you'll have specify extra options.\n"
"These options should be chosen based on the layouts described here:\n"
" http://linux-sunxi.org/NAND#More_information_on_BROM_NAND\n"
"\n"
" --usable should be assigned the 'Hardware page' value\n"
" --ecc should be assigned the 'ECC capacity'/'ECC page' values\n"
" --usable should be smaller than --page\n"
"\n"
"The --address option is only required for non-boot0 images that are \n"
"meant to be programmed at a non eraseblock aligned offset.\n"
"\n"
"Examples:\n"
" The H27UCG8T2BTR-BC NAND exposes\n"
" * 16k pages\n"
" * 1280 OOB bytes per page\n"
" * 4M eraseblocks\n"
" * requires data scrambling\n"
" * expects a minimum ECC of 40bits/1024bytes\n"
"\n"
" A normal image can be generated with\n"
" sunxi-nand-image-builder -p 16384 -o 1280 -e 0x400000 -s -c 40/1024\n"
" A boot0 image can be generated with\n"
" sunxi-nand-image-builder -p 16384 -o 1280 -e 0x400000 -s -b -u 4096 -c 64/1024\n",
PLAIN_VERSION);
- exit(status);
+}
+static int check_image_info(struct image_info *info) +{
- static int valid_ecc_strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
- int eccbytes, eccsteps;
- unsigned i;
- if (!info->page_size) {
fprintf(stderr, "--page is missing\n");
return -EINVAL;
- }
- if (!info->page_size) {
fprintf(stderr, "--oob is missing\n");
return -EINVAL;
- }
- if (!info->eraseblock_size) {
fprintf(stderr, "--eraseblock is missing\n");
return -EINVAL;
- }
- if (info->ecc_step_size != 512 && info->ecc_step_size != 1024) {
fprintf(stderr, "Invalid ECC step argument: %d\n",
info->ecc_step_size);
return -EINVAL;
- }
- for (i = 0; i < ARRAY_SIZE(valid_ecc_strengths); i++) {
if (valid_ecc_strengths[i] == info->ecc_strength)
break;
- }
- if (i == ARRAY_SIZE(valid_ecc_strengths)) {
fprintf(stderr, "Invalid ECC strength argument: %d\n",
info->ecc_strength);
return -EINVAL;
- }
- eccbytes = DIV_ROUND_UP(info->ecc_strength * 14, 8);
- if (eccbytes % 2)
eccbytes++;
- eccbytes += 4;
- eccsteps = info->usable_page_size / info->ecc_step_size;
- if (info->page_size + info->oob_size <
info->usable_page_size + (eccsteps * eccbytes)) {
fprintf(stderr,
"ECC bytes do not fit in the NAND page, choose a weaker ECC\n");
return -EINVAL;
- }
- return 0;
+}
+int main(int argc, char **argv) +{
- struct image_info info;
- memset(&info, 0, sizeof(info));
- /*
* Process user arguments
*/
- for (;;) {
int option_index = 0;
char *endptr = NULL;
static const struct option long_options[] = {
{"help", no_argument, 0, 'h'},
{"ecc", required_argument, 0, 'c'},
{"page", required_argument, 0, 'p'},
{"oob", required_argument, 0, 'o'},
{"usable", required_argument, 0, 'u'},
{"eraseblock", required_argument, 0, 'e'},
{"boot0", no_argument, 0, 'b'},
{"scramble", no_argument, 0, 's'},
{"address", required_argument, 0, 'a'},
{0, 0, 0, 0},
};
int c = getopt_long(argc, argv, "c:p:o:u:e:ba:sh",
long_options, &option_index);
if (c == EOF)
break;
switch (c) {
case 'h':
display_help(0);
break;
case 's':
info.scramble = 1;
break;
case 'c':
info.ecc_strength = strtol(optarg, &endptr, 0);
if (endptr || *endptr == '/')
info.ecc_step_size = strtol(endptr + 1, NULL, 0);
break;
case 'p':
info.page_size = strtol(optarg, NULL, 0);
break;
case 'o':
info.oob_size = strtol(optarg, NULL, 0);
break;
case 'u':
info.usable_page_size = strtol(optarg, NULL, 0);
break;
case 'e':
info.eraseblock_size = strtol(optarg, NULL, 0);
break;
case 'b':
info.boot0 = 1;
break;
case 'a':
info.offset = strtoull(optarg, NULL, 0);
break;
case '?':
display_help(-1);
break;
}
- }
- if ((argc - optind) != 2)
display_help(-1);
- info.source = argv[optind];
- info.dest = argv[optind + 1];
- if (!info.boot0) {
info.usable_page_size = info.page_size;
- } else if (!info.usable_page_size) {
if (info.page_size > 8192)
info.usable_page_size = 8192;
else if (info.page_size > 4096)
info.usable_page_size = 4096;
else
info.usable_page_size = 1024;
- }
- if (check_image_info(&info))
display_help(-1);
- return create_image(&info);
+}

Hi,
On 14-11-16 12:18, Hans de Goede wrote:
Hi,
On 08-11-16 17:21, Maxime Ripard wrote:
This program generates raw SPL images that can be flashed on the NAND with the ECC and randomizer properly set up.
Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com
Looks good to me:
Reviewed-by: Hans de Goede hdegoede@redhat.com
Note this causes a cpu_to_be32 redefine compiler warning I've fixed this up locally.
Regards,
Hans
Regards,
Hans
tools/.gitignore | 1 +- tools/Makefile | 1 +- tools/sunxi-spl-image-builder.c | 1113 ++++++++++++++++++++++++++++++++- 3 files changed, 1115 insertions(+), 0 deletions(-) create mode 100644 tools/sunxi-spl-image-builder.c
diff --git a/tools/.gitignore b/tools/.gitignore index cb1e722d4575..16574467544c 100644 --- a/tools/.gitignore +++ b/tools/.gitignore @@ -15,6 +15,7 @@ /mkexynosspl /mxsboot /mksunxiboot +/sunxi-spl-image-builder /ncb /proftool /relocate-rela diff --git a/tools/Makefile b/tools/Makefile index 400588cf0f5c..dfeeb23484ce 100644 --- a/tools/Makefile +++ b/tools/Makefile @@ -171,6 +171,7 @@ hostprogs-$(CONFIG_MX28) += mxsboot HOSTCFLAGS_mxsboot.o := -pedantic
hostprogs-$(CONFIG_ARCH_SUNXI) += mksunxiboot +hostprogs-$(CONFIG_ARCH_SUNXI) += sunxi-spl-image-builder
hostprogs-$(CONFIG_NETCONSOLE) += ncb hostprogs-$(CONFIG_SHA1_CHECK_UB_IMG) += ubsha1 diff --git a/tools/sunxi-spl-image-builder.c b/tools/sunxi-spl-image-builder.c new file mode 100644 index 000000000000..0f915eb2bdf5 --- /dev/null +++ b/tools/sunxi-spl-image-builder.c @@ -0,0 +1,1113 @@ +/*
- Generic binary BCH encoding/decoding library
- This program is free software; you can redistribute it and/or modify it
- under the terms of the GNU General Public License version 2 as published by
- the Free Software Foundation.
- This program is distributed in the hope that it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc., 51
- Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- For the BCH implementation:
- Copyright © 2011 Parrot S.A.
- Author: Ivan Djelic ivan.djelic@parrot.com
- See also:
- For the randomizer and image builder implementation:
- Copyright © 2016 NextThing Co.
- Copyright © 2016 Free Electrons
- Author: Boris Brezillon boris.brezillon@free-electrons.com
- */
+#include <stdint.h> +#include <stdlib.h> +#include <string.h> +#include <stdio.h> +#include <linux/kernel.h> +#include <linux/errno.h> +#include <asm/byteorder.h> +#include <endian.h> +#include <getopt.h> +#include <version.h>
+#if defined(CONFIG_BCH_CONST_PARAMS) +#define GF_M(_p) (CONFIG_BCH_CONST_M) +#define GF_T(_p) (CONFIG_BCH_CONST_T) +#define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1) +#else +#define GF_M(_p) ((_p)->m) +#define GF_T(_p) ((_p)->t) +#define GF_N(_p) ((_p)->n) +#endif
+#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
+#define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32) +#define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
+#ifndef dbg +#define dbg(_fmt, args...) do {} while (0) +#endif
+#define cpu_to_be32 htobe32 +#define kfree free +#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
+#define BCH_PRIMITIVE_POLY 0x5803
+struct image_info {
- int ecc_strength;
- int ecc_step_size;
- int page_size;
- int oob_size;
- int usable_page_size;
- int eraseblock_size;
- int scramble;
- int boot0;
- off_t offset;
- const char *source;
- const char *dest;
+};
+/**
- struct bch_control - BCH control structure
- @m: Galois field order
- @n: maximum codeword size in bits (= 2^m-1)
- @t: error correction capability in bits
- @ecc_bits: ecc exact size in bits, i.e. generator polynomial degree (<=m*t)
- @ecc_bytes: ecc max size (m*t bits) in bytes
- @a_pow_tab: Galois field GF(2^m) exponentiation lookup table
- @a_log_tab: Galois field GF(2^m) log lookup table
- @mod8_tab: remainder generator polynomial lookup tables
- @ecc_buf: ecc parity words buffer
- @ecc_buf2: ecc parity words buffer
- @xi_tab: GF(2^m) base for solving degree 2 polynomial roots
- @syn: syndrome buffer
- @cache: log-based polynomial representation buffer
- @elp: error locator polynomial
- @poly_2t: temporary polynomials of degree 2t
- */
+struct bch_control {
- unsigned int m;
- unsigned int n;
- unsigned int t;
- unsigned int ecc_bits;
- unsigned int ecc_bytes;
+/* private: */
- uint16_t *a_pow_tab;
- uint16_t *a_log_tab;
- uint32_t *mod8_tab;
- uint32_t *ecc_buf;
- uint32_t *ecc_buf2;
- unsigned int *xi_tab;
- unsigned int *syn;
- int *cache;
- struct gf_poly *elp;
- struct gf_poly *poly_2t[4];
+};
+static int fls(int x) +{
- int r = 32;
- if (!x)
return 0;
- if (!(x & 0xffff0000u)) {
x <<= 16;
r -= 16;
- }
- if (!(x & 0xff000000u)) {
x <<= 8;
r -= 8;
- }
- if (!(x & 0xf0000000u)) {
x <<= 4;
r -= 4;
- }
- if (!(x & 0xc0000000u)) {
x <<= 2;
r -= 2;
- }
- if (!(x & 0x80000000u)) {
x <<= 1;
r -= 1;
- }
- return r;
+}
+/*
- represent a polynomial over GF(2^m)
- */
+struct gf_poly {
- unsigned int deg; /* polynomial degree */
- unsigned int c[0]; /* polynomial terms */
+};
+/* given its degree, compute a polynomial size in bytes */ +#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
+/* polynomial of degree 1 */ +struct gf_poly_deg1 {
- struct gf_poly poly;
- unsigned int c[2];
+};
+/*
- same as encode_bch(), but process input data one byte at a time
- */
+static void encode_bch_unaligned(struct bch_control *bch,
const unsigned char *data, unsigned int len,
uint32_t *ecc)
+{
- int i;
- const uint32_t *p;
- const int l = BCH_ECC_WORDS(bch)-1;
- while (len--) {
p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff);
for (i = 0; i < l; i++)
ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
ecc[l] = (ecc[l] << 8)^(*p);
- }
+}
+/*
- convert ecc bytes to aligned, zero-padded 32-bit ecc words
- */
+static void load_ecc8(struct bch_control *bch, uint32_t *dst,
const uint8_t *src)
+{
- uint8_t pad[4] = {0, 0, 0, 0};
- unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
- for (i = 0; i < nwords; i++, src += 4)
dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3];
- memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
- dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3];
+}
+/*
- convert 32-bit ecc words to ecc bytes
- */
+static void store_ecc8(struct bch_control *bch, uint8_t *dst,
const uint32_t *src)
+{
- uint8_t pad[4];
- unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
- for (i = 0; i < nwords; i++) {
*dst++ = (src[i] >> 24);
*dst++ = (src[i] >> 16) & 0xff;
*dst++ = (src[i] >> 8) & 0xff;
*dst++ = (src[i] >> 0) & 0xff;
- }
- pad[0] = (src[nwords] >> 24);
- pad[1] = (src[nwords] >> 16) & 0xff;
- pad[2] = (src[nwords] >> 8) & 0xff;
- pad[3] = (src[nwords] >> 0) & 0xff;
- memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
+}
+/**
- encode_bch - calculate BCH ecc parity of data
- @bch: BCH control structure
- @data: data to encode
- @len: data length in bytes
- @ecc: ecc parity data, must be initialized by caller
- The @ecc parity array is used both as input and output parameter, in order to
- allow incremental computations. It should be of the size indicated by member
- @ecc_bytes of @bch, and should be initialized to 0 before the first call.
- The exact number of computed ecc parity bits is given by member @ecc_bits of
- @bch; it may be less than m*t for large values of t.
- */
+static void encode_bch(struct bch_control *bch, const uint8_t *data,
unsigned int len, uint8_t *ecc)
+{
- const unsigned int l = BCH_ECC_WORDS(bch)-1;
- unsigned int i, mlen;
- unsigned long m;
- uint32_t w, r[l+1];
- const uint32_t * const tab0 = bch->mod8_tab;
- const uint32_t * const tab1 = tab0 + 256*(l+1);
- const uint32_t * const tab2 = tab1 + 256*(l+1);
- const uint32_t * const tab3 = tab2 + 256*(l+1);
- const uint32_t *pdata, *p0, *p1, *p2, *p3;
- if (ecc) {
/* load ecc parity bytes into internal 32-bit buffer */
load_ecc8(bch, bch->ecc_buf, ecc);
- } else {
memset(bch->ecc_buf, 0, sizeof(r));
- }
- /* process first unaligned data bytes */
- m = ((uintptr_t)data) & 3;
- if (m) {
mlen = (len < (4-m)) ? len : 4-m;
encode_bch_unaligned(bch, data, mlen, bch->ecc_buf);
data += mlen;
len -= mlen;
- }
- /* process 32-bit aligned data words */
- pdata = (uint32_t *)data;
- mlen = len/4;
- data += 4*mlen;
- len -= 4*mlen;
- memcpy(r, bch->ecc_buf, sizeof(r));
- /*
* split each 32-bit word into 4 polynomials of weight 8 as follows:
*
* 31 ...24 23 ...16 15 ... 8 7 ... 0
* xxxxxxxx yyyyyyyy zzzzzzzz tttttttt
* tttttttt mod g = r0 (precomputed)
* zzzzzzzz 00000000 mod g = r1 (precomputed)
* yyyyyyyy 00000000 00000000 mod g = r2 (precomputed)
* xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed)
* xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3
*/
- while (mlen--) {
/* input data is read in big-endian format */
w = r[0]^cpu_to_be32(*pdata++);
p0 = tab0 + (l+1)*((w >> 0) & 0xff);
p1 = tab1 + (l+1)*((w >> 8) & 0xff);
p2 = tab2 + (l+1)*((w >> 16) & 0xff);
p3 = tab3 + (l+1)*((w >> 24) & 0xff);
for (i = 0; i < l; i++)
r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
r[l] = p0[l]^p1[l]^p2[l]^p3[l];
- }
- memcpy(bch->ecc_buf, r, sizeof(r));
- /* process last unaligned bytes */
- if (len)
encode_bch_unaligned(bch, data, len, bch->ecc_buf);
- /* store ecc parity bytes into original parity buffer */
- if (ecc)
store_ecc8(bch, ecc, bch->ecc_buf);
+}
+static inline int modulo(struct bch_control *bch, unsigned int v) +{
- const unsigned int n = GF_N(bch);
- while (v >= n) {
v -= n;
v = (v & n) + (v >> GF_M(bch));
- }
- return v;
+}
+/*
- shorter and faster modulo function, only works when v < 2N.
- */
+static inline int mod_s(struct bch_control *bch, unsigned int v) +{
- const unsigned int n = GF_N(bch);
- return (v < n) ? v : v-n;
+}
+static inline int deg(unsigned int poly) +{
- /* polynomial degree is the most-significant bit index */
- return fls(poly)-1;
+}
+/* Galois field basic operations: multiply, divide, inverse, etc. */
+static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
unsigned int b)
+{
- return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
bch->a_log_tab[b])] : 0;
+}
+static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a) +{
- return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
+}
+static inline unsigned int a_pow(struct bch_control *bch, int i) +{
- return bch->a_pow_tab[modulo(bch, i)];
+}
+static inline int a_log(struct bch_control *bch, unsigned int x) +{
- return bch->a_log_tab[x];
+}
+/*
- generate Galois field lookup tables
- */
+static int build_gf_tables(struct bch_control *bch, unsigned int poly) +{
- unsigned int i, x = 1;
- const unsigned int k = 1 << deg(poly);
- /* primitive polynomial must be of degree m */
- if (k != (1u << GF_M(bch)))
return -1;
- for (i = 0; i < GF_N(bch); i++) {
bch->a_pow_tab[i] = x;
bch->a_log_tab[x] = i;
if (i && (x == 1))
/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
return -1;
x <<= 1;
if (x & k)
x ^= poly;
- }
- bch->a_pow_tab[GF_N(bch)] = 1;
- bch->a_log_tab[0] = 0;
- return 0;
+}
+/*
- compute generator polynomial remainder tables for fast encoding
- */
+static void build_mod8_tables(struct bch_control *bch, const uint32_t *g) +{
- int i, j, b, d;
- uint32_t data, hi, lo, *tab;
- const int l = BCH_ECC_WORDS(bch);
- const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
- const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
- memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
- for (i = 0; i < 256; i++) {
/* p(X)=i is a small polynomial of weight <= 8 */
for (b = 0; b < 4; b++) {
/* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
tab = bch->mod8_tab + (b*256+i)*l;
data = i << (8*b);
while (data) {
d = deg(data);
/* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
data ^= g[0] >> (31-d);
for (j = 0; j < ecclen; j++) {
hi = (d < 31) ? g[j] << (d+1) : 0;
lo = (j+1 < plen) ?
g[j+1] >> (31-d) : 0;
tab[j] ^= hi|lo;
}
}
}
- }
+}
+/*
- build a base for factoring degree 2 polynomials
- */
+static int build_deg2_base(struct bch_control *bch) +{
- const int m = GF_M(bch);
- int i, j, r;
- unsigned int sum, x, y, remaining, ak = 0, xi[m];
- /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
- for (i = 0; i < m; i++) {
for (j = 0, sum = 0; j < m; j++)
sum ^= a_pow(bch, i*(1 << j));
if (sum) {
ak = bch->a_pow_tab[i];
break;
}
- }
- /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
- remaining = m;
- memset(xi, 0, sizeof(xi));
- for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
y = gf_sqr(bch, x)^x;
for (i = 0; i < 2; i++) {
r = a_log(bch, y);
if (y && (r < m) && !xi[r]) {
bch->xi_tab[r] = x;
xi[r] = 1;
remaining--;
dbg("x%d = %x\n", r, x);
break;
}
y ^= ak;
}
- }
- /* should not happen but check anyway */
- return remaining ? -1 : 0;
+}
+static void *bch_alloc(size_t size, int *err) +{
- void *ptr;
- ptr = malloc(size);
- if (ptr == NULL)
*err = 1;
- return ptr;
+}
+/*
- compute generator polynomial for given (m,t) parameters.
- */
+static uint32_t *compute_generator_polynomial(struct bch_control *bch) +{
- const unsigned int m = GF_M(bch);
- const unsigned int t = GF_T(bch);
- int n, err = 0;
- unsigned int i, j, nbits, r, word, *roots;
- struct gf_poly *g;
- uint32_t *genpoly;
- g = bch_alloc(GF_POLY_SZ(m*t), &err);
- roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
- genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
- if (err) {
kfree(genpoly);
genpoly = NULL;
goto finish;
- }
- /* enumerate all roots of g(X) */
- memset(roots , 0, (bch->n+1)*sizeof(*roots));
- for (i = 0; i < t; i++) {
for (j = 0, r = 2*i+1; j < m; j++) {
roots[r] = 1;
r = mod_s(bch, 2*r);
}
- }
- /* build generator polynomial g(X) */
- g->deg = 0;
- g->c[0] = 1;
- for (i = 0; i < GF_N(bch); i++) {
if (roots[i]) {
/* multiply g(X) by (X+root) */
r = bch->a_pow_tab[i];
g->c[g->deg+1] = 1;
for (j = g->deg; j > 0; j--)
g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
g->c[0] = gf_mul(bch, g->c[0], r);
g->deg++;
}
- }
- /* store left-justified binary representation of g(X) */
- n = g->deg+1;
- i = 0;
- while (n > 0) {
nbits = (n > 32) ? 32 : n;
for (j = 0, word = 0; j < nbits; j++) {
if (g->c[n-1-j])
word |= 1u << (31-j);
}
genpoly[i++] = word;
n -= nbits;
- }
- bch->ecc_bits = g->deg;
+finish:
- kfree(g);
- kfree(roots);
- return genpoly;
+}
+/**
- free_bch - free the BCH control structure
- @bch: BCH control structure to release
- */
+static void free_bch(struct bch_control *bch) +{
- unsigned int i;
- if (bch) {
kfree(bch->a_pow_tab);
kfree(bch->a_log_tab);
kfree(bch->mod8_tab);
kfree(bch->ecc_buf);
kfree(bch->ecc_buf2);
kfree(bch->xi_tab);
kfree(bch->syn);
kfree(bch->cache);
kfree(bch->elp);
for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
kfree(bch->poly_2t[i]);
kfree(bch);
- }
+}
+/**
- init_bch - initialize a BCH encoder/decoder
- @m: Galois field order, should be in the range 5-15
- @t: maximum error correction capability, in bits
- @prim_poly: user-provided primitive polynomial (or 0 to use default)
- Returns:
- a newly allocated BCH control structure if successful, NULL otherwise
- This initialization can take some time, as lookup tables are built for fast
- encoding/decoding; make sure not to call this function from a time critical
- path. Usually, init_bch() should be called on module/driver init and
- free_bch() should be called to release memory on exit.
- You may provide your own primitive polynomial of degree @m in argument
- @prim_poly, or let init_bch() use its default polynomial.
- Once init_bch() has successfully returned a pointer to a newly allocated
- BCH control structure, ecc length in bytes is given by member @ecc_bytes of
- the structure.
- */
+static struct bch_control *init_bch(int m, int t, unsigned int prim_poly) +{
- int err = 0;
- unsigned int i, words;
- uint32_t *genpoly;
- struct bch_control *bch = NULL;
- const int min_m = 5;
- const int max_m = 15;
- /* default primitive polynomials */
- static const unsigned int prim_poly_tab[] = {
0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
0x402b, 0x8003,
- };
+#if defined(CONFIG_BCH_CONST_PARAMS)
- if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
printk(KERN_ERR "bch encoder/decoder was configured to support "
"parameters m=%d, t=%d only!\n",
CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
goto fail;
- }
+#endif
- if ((m < min_m) || (m > max_m))
/*
* values of m greater than 15 are not currently supported;
* supporting m > 15 would require changing table base type
* (uint16_t) and a small patch in matrix transposition
*/
goto fail;
- /* sanity checks */
- if ((t < 1) || (m*t >= ((1 << m)-1)))
/* invalid t value */
goto fail;
- /* select a primitive polynomial for generating GF(2^m) */
- if (prim_poly == 0)
prim_poly = prim_poly_tab[m-min_m];
- bch = malloc(sizeof(*bch));
- if (bch == NULL)
goto fail;
- memset(bch, 0, sizeof(*bch));
- bch->m = m;
- bch->t = t;
- bch->n = (1 << m)-1;
- words = DIV_ROUND_UP(m*t, 32);
- bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
- bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
- bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
- bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
- bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
- bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
- bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err);
- bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err);
- bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err);
- bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
- for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
- if (err)
goto fail;
- err = build_gf_tables(bch, prim_poly);
- if (err)
goto fail;
- /* use generator polynomial for computing encoding tables */
- genpoly = compute_generator_polynomial(bch);
- if (genpoly == NULL)
goto fail;
- build_mod8_tables(bch, genpoly);
- kfree(genpoly);
- err = build_deg2_base(bch);
- if (err)
goto fail;
- return bch;
+fail:
- free_bch(bch);
- return NULL;
+}
+static void swap_bits(uint8_t *buf, int len) +{
- int i, j;
- for (j = 0; j < len; j++) {
uint8_t byte = buf[j];
buf[j] = 0;
for (i = 0; i < 8; i++) {
if (byte & (1 << i))
buf[j] |= (1 << (7 - i));
}
- }
+}
+static uint16_t lfsr_step(uint16_t state, int count) +{
- state &= 0x7fff;
- while (count--)
state = ((state >> 1) |
((((state >> 0) ^ (state >> 1)) & 1) << 14)) & 0x7fff;
- return state;
+}
+static uint16_t default_scrambler_seeds[] = {
- 0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72,
- 0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436,
- 0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d,
- 0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130,
- 0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56,
- 0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55,
- 0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb,
- 0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17,
- 0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62,
- 0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064,
- 0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126,
- 0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e,
- 0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3,
- 0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b,
- 0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d,
- 0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db,
+};
+static uint16_t brom_scrambler_seeds[] = { 0x4a80 };
+static void scramble(const struct image_info *info,
int page, uint8_t *data, int datalen)
+{
- uint16_t state;
- int i;
- /* Boot0 is always scrambled no matter the command line option. */
- if (info->boot0) {
state = brom_scrambler_seeds[0];
- } else {
unsigned seedmod = info->eraseblock_size / info->page_size;
/* Bail out earlier if the user didn't ask for scrambling. */
if (!info->scramble)
return;
if (seedmod > ARRAY_SIZE(default_scrambler_seeds))
seedmod = ARRAY_SIZE(default_scrambler_seeds);
state = default_scrambler_seeds[page % seedmod];
- }
- /* Prepare the initial state... */
- state = lfsr_step(state, 15);
- /* and start scrambling data. */
- for (i = 0; i < datalen; i++) {
data[i] ^= state;
state = lfsr_step(state, 8);
- }
+}
+static int write_page(const struct image_info *info, uint8_t *buffer,
FILE *src, FILE *rnd, FILE *dst,
struct bch_control *bch, int page)
+{
- int steps = info->usable_page_size / info->ecc_step_size;
- int eccbytes = DIV_ROUND_UP(info->ecc_strength * 14, 8);
- off_t pos = ftell(dst);
- size_t pad, cnt;
- int i;
- if (eccbytes % 2)
eccbytes++;
- memset(buffer, 0xff, info->page_size + info->oob_size);
- cnt = fread(buffer, 1, info->usable_page_size, src);
- if (!cnt) {
if (!feof(src)) {
fprintf(stderr,
"Failed to read data from the source\n");
return -1;
} else {
return 0;
}
- }
- fwrite(buffer, info->page_size + info->oob_size, 1, dst);
- for (i = 0; i < info->usable_page_size; i++) {
if (buffer[i] != 0xff)
break;
- }
- /* We leave empty pages at 0xff. */
- if (i == info->usable_page_size)
return 0;
- /* Restore the source pointer to read it again. */
- fseek(src, -cnt, SEEK_CUR);
- /* Randomize unused space if scrambling is required. */
- if (info->scramble) {
int offs;
if (info->boot0) {
offs = steps * (info->ecc_step_size + eccbytes + 4);
cnt = info->page_size + info->oob_size - offs;
fread(buffer + offs, 1, cnt, rnd);
} else {
offs = info->page_size + (steps * (eccbytes + 4));
cnt = info->page_size + info->oob_size - offs;
memset(buffer + offs, 0xff, cnt);
scramble(info, page, buffer + offs, cnt);
}
fseek(dst, pos + offs, SEEK_SET);
fwrite(buffer + offs, cnt, 1, dst);
- }
- for (i = 0; i < steps; i++) {
int ecc_offs, data_offs;
uint8_t *ecc;
memset(buffer, 0xff, info->ecc_step_size + eccbytes + 4);
ecc = buffer + info->ecc_step_size + 4;
if (info->boot0) {
data_offs = i * (info->ecc_step_size + eccbytes + 4);
ecc_offs = data_offs + info->ecc_step_size + 4;
} else {
data_offs = i * info->ecc_step_size;
ecc_offs = info->page_size + 4 + (i * (eccbytes + 4));
}
cnt = fread(buffer, 1, info->ecc_step_size, src);
if (!cnt && !feof(src)) {
fprintf(stderr,
"Failed to read data from the source\n");
return -1;
}
pad = info->ecc_step_size - cnt;
if (pad) {
if (info->scramble && info->boot0)
fread(buffer + cnt, 1, pad, rnd);
else
memset(buffer + cnt, 0xff, pad);
}
memset(ecc, 0, eccbytes);
swap_bits(buffer, info->ecc_step_size + 4);
encode_bch(bch, buffer, info->ecc_step_size + 4, ecc);
swap_bits(buffer, info->ecc_step_size + 4);
swap_bits(ecc, eccbytes);
scramble(info, page, buffer, info->ecc_step_size + 4 + eccbytes);
fseek(dst, pos + data_offs, SEEK_SET);
fwrite(buffer, info->ecc_step_size, 1, dst);
fseek(dst, pos + ecc_offs - 4, SEEK_SET);
fwrite(ecc - 4, eccbytes + 4, 1, dst);
- }
- /* Fix BBM. */
- fseek(dst, pos + info->page_size, SEEK_SET);
- memset(buffer, 0xff, 2);
- fwrite(buffer, 2, 1, dst);
- /* Make dst pointer point to the next page. */
- fseek(dst, pos + info->page_size + info->oob_size, SEEK_SET);
- return 0;
+}
+static int create_image(const struct image_info *info) +{
- off_t page = info->offset / info->page_size;
- struct bch_control *bch;
- FILE *src, *dst, *rnd;
- uint8_t *buffer;
- bch = init_bch(14, info->ecc_strength, BCH_PRIMITIVE_POLY);
- if (!bch) {
fprintf(stderr, "Failed to init the BCH engine\n");
return -1;
- }
- buffer = malloc(info->page_size + info->oob_size);
- if (!buffer) {
fprintf(stderr, "Failed to allocate the NAND page buffer\n");
return -1;
- }
- memset(buffer, 0xff, info->page_size + info->oob_size);
- src = fopen(info->source, "r");
- if (!src) {
fprintf(stderr, "Failed to open source file (%s)\n",
info->source);
return -1;
- }
- dst = fopen(info->dest, "w");
- if (!dst) {
fprintf(stderr, "Failed to open dest file (%s)\n", info->dest);
return -1;
- }
- rnd = fopen("/dev/urandom", "r");
- if (!rnd) {
fprintf(stderr, "Failed to open /dev/urandom\n");
return -1;
- }
- while (!feof(src)) {
int ret;
ret = write_page(info, buffer, src, rnd, dst, bch, page++);
if (ret)
return ret;
- }
- return 0;
+}
+static void display_help(int status) +{
- fprintf(status == EXIT_SUCCESS ? stdout : stderr,
"sunxi-nand-image-builder %s\n"
"\n"
"Usage: sunxi-nand-image-builder [OPTIONS] source-image output-image\n"
"\n"
"Creates a raw NAND image that can be read by the sunxi NAND controller.\n"
"\n"
"-h --help Display this help and exit\n"
"-c <str>/<step> --ecc=<str>/<step> ECC config (strength/step-size)\n"
"-p <size> --page=<size> Page size\n"
"-o <size> --oob=<size> OOB size\n"
"-u <size> --usable=<size> Usable page size\n"
"-e <size> --eraseblock=<size> Erase block size\n"
"-b --boot0 Build a boot0 image.\n"
"-s --scramble Scramble data\n"
"-a <offset> --address=<offset> Where the image will be programmed.\n"
"\n"
"Notes:\n"
"All the information you need to pass to this tool should be part of\n"
"the NAND datasheet.\n"
"\n"
"The NAND controller only supports the following ECC configs\n"
" Valid ECC strengths: 16, 24, 28, 32, 40, 48, 56, 60 and 64\n"
" Valid ECC step size: 512 and 1024\n"
"\n"
"If you are building a boot0 image, you'll have specify extra options.\n"
"These options should be chosen based on the layouts described here:\n"
" http://linux-sunxi.org/NAND#More_information_on_BROM_NAND\n"
"\n"
" --usable should be assigned the 'Hardware page' value\n"
" --ecc should be assigned the 'ECC capacity'/'ECC page' values\n"
" --usable should be smaller than --page\n"
"\n"
"The --address option is only required for non-boot0 images that are \n"
"meant to be programmed at a non eraseblock aligned offset.\n"
"\n"
"Examples:\n"
" The H27UCG8T2BTR-BC NAND exposes\n"
" * 16k pages\n"
" * 1280 OOB bytes per page\n"
" * 4M eraseblocks\n"
" * requires data scrambling\n"
" * expects a minimum ECC of 40bits/1024bytes\n"
"\n"
" A normal image can be generated with\n"
" sunxi-nand-image-builder -p 16384 -o 1280 -e 0x400000 -s -c 40/1024\n"
" A boot0 image can be generated with\n"
" sunxi-nand-image-builder -p 16384 -o 1280 -e 0x400000 -s -b -u 4096 -c 64/1024\n",
PLAIN_VERSION);
- exit(status);
+}
+static int check_image_info(struct image_info *info) +{
- static int valid_ecc_strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
- int eccbytes, eccsteps;
- unsigned i;
- if (!info->page_size) {
fprintf(stderr, "--page is missing\n");
return -EINVAL;
- }
- if (!info->page_size) {
fprintf(stderr, "--oob is missing\n");
return -EINVAL;
- }
- if (!info->eraseblock_size) {
fprintf(stderr, "--eraseblock is missing\n");
return -EINVAL;
- }
- if (info->ecc_step_size != 512 && info->ecc_step_size != 1024) {
fprintf(stderr, "Invalid ECC step argument: %d\n",
info->ecc_step_size);
return -EINVAL;
- }
- for (i = 0; i < ARRAY_SIZE(valid_ecc_strengths); i++) {
if (valid_ecc_strengths[i] == info->ecc_strength)
break;
- }
- if (i == ARRAY_SIZE(valid_ecc_strengths)) {
fprintf(stderr, "Invalid ECC strength argument: %d\n",
info->ecc_strength);
return -EINVAL;
- }
- eccbytes = DIV_ROUND_UP(info->ecc_strength * 14, 8);
- if (eccbytes % 2)
eccbytes++;
- eccbytes += 4;
- eccsteps = info->usable_page_size / info->ecc_step_size;
- if (info->page_size + info->oob_size <
info->usable_page_size + (eccsteps * eccbytes)) {
fprintf(stderr,
"ECC bytes do not fit in the NAND page, choose a weaker ECC\n");
return -EINVAL;
- }
- return 0;
+}
+int main(int argc, char **argv) +{
- struct image_info info;
- memset(&info, 0, sizeof(info));
- /*
* Process user arguments
*/
- for (;;) {
int option_index = 0;
char *endptr = NULL;
static const struct option long_options[] = {
{"help", no_argument, 0, 'h'},
{"ecc", required_argument, 0, 'c'},
{"page", required_argument, 0, 'p'},
{"oob", required_argument, 0, 'o'},
{"usable", required_argument, 0, 'u'},
{"eraseblock", required_argument, 0, 'e'},
{"boot0", no_argument, 0, 'b'},
{"scramble", no_argument, 0, 's'},
{"address", required_argument, 0, 'a'},
{0, 0, 0, 0},
};
int c = getopt_long(argc, argv, "c:p:o:u:e:ba:sh",
long_options, &option_index);
if (c == EOF)
break;
switch (c) {
case 'h':
display_help(0);
break;
case 's':
info.scramble = 1;
break;
case 'c':
info.ecc_strength = strtol(optarg, &endptr, 0);
if (endptr || *endptr == '/')
info.ecc_step_size = strtol(endptr + 1, NULL, 0);
break;
case 'p':
info.page_size = strtol(optarg, NULL, 0);
break;
case 'o':
info.oob_size = strtol(optarg, NULL, 0);
break;
case 'u':
info.usable_page_size = strtol(optarg, NULL, 0);
break;
case 'e':
info.eraseblock_size = strtol(optarg, NULL, 0);
break;
case 'b':
info.boot0 = 1;
break;
case 'a':
info.offset = strtoull(optarg, NULL, 0);
break;
case '?':
display_help(-1);
break;
}
- }
- if ((argc - optind) != 2)
display_help(-1);
- info.source = argv[optind];
- info.dest = argv[optind + 1];
- if (!info.boot0) {
info.usable_page_size = info.page_size;
- } else if (!info.usable_page_size) {
if (info.page_size > 8192)
info.usable_page_size = 8192;
else if (info.page_size > 4096)
info.usable_page_size = 4096;
else
info.usable_page_size = 1024;
- }
- if (check_image_info(&info))
display_help(-1);
- return create_image(&info);
+}

On Mon, Nov 14, 2016 at 12:29:25PM +0100, Hans de Goede wrote:
Hi,
On 14-11-16 12:18, Hans de Goede wrote:
Hi,
On 08-11-16 17:21, Maxime Ripard wrote:
This program generates raw SPL images that can be flashed on the NAND with the ECC and randomizer properly set up.
Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com
Looks good to me:
Reviewed-by: Hans de Goede hdegoede@redhat.com
Note this causes a cpu_to_be32 redefine compiler warning I've fixed this up locally.
I'll have to send a v2 based on Tom's comments. How did you fix this?
Thanks, Maxime

Hi,
On 14-11-16 14:53, Maxime Ripard wrote:
On Mon, Nov 14, 2016 at 12:29:25PM +0100, Hans de Goede wrote:
Hi,
On 14-11-16 12:18, Hans de Goede wrote:
Hi,
On 08-11-16 17:21, Maxime Ripard wrote:
This program generates raw SPL images that can be flashed on the NAND with the ECC and randomizer properly set up.
Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com
Looks good to me:
Reviewed-by: Hans de Goede hdegoede@redhat.com
Note this causes a cpu_to_be32 redefine compiler warning I've fixed this up locally.
I'll have to send a v2 based on Tom's comments. How did you fix this?
I added an undef above the define, if you use the pre-existing macro you get problems later because it gets called as cpu_to_be32(*addr++) and the pre-existing macro references its argument multiple times.
Regards,
Hans

The SPL image needs to be built with a different ECC configuration than the U-Boot binary.
Add Kconfig options with defaults to provide a value that should work for anyone, but is still configurable if needs be.
Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com --- drivers/mtd/nand/Kconfig | 16 ++++++++++++++++ 1 file changed, 16 insertions(+), 0 deletions(-)
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index df154bfd32b9..a60abb625ee5 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig @@ -73,6 +73,22 @@ config NAND_SUNXI The SPL driver only supports reading from the NAND using DMA transfers.
+if NAND_SUNXI + +config NAND_SUNXI_SPL_ECC_STRENGTH + int "Allwinner NAND SPL ECC Strength" + default 64 + +config NAND_SUNXI_SPL_ECC_SIZE + int "Allwinner NAND SPL ECC Step Size" + default 1024 + +config NAND_SUNXI_SPL_USABLE_PAGE_SIZE + int "Allwinner NAND SPL Usable Page Size" + default 1024 + +endif + config NAND_ARASAN bool "Configure Arasan Nand" help

On Tue, 8 Nov 2016 17:21:15 +0100 Maxime Ripard maxime.ripard@free-electrons.com wrote:
The SPL image needs to be built with a different ECC configuration than the U-Boot binary.
Add Kconfig options with defaults to provide a value that should work for anyone, but is still configurable if needs be.
Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com
Acked-by: Boris Brezillon boris.brezillon@free-electrons.com
drivers/mtd/nand/Kconfig | 16 ++++++++++++++++ 1 file changed, 16 insertions(+), 0 deletions(-)
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index df154bfd32b9..a60abb625ee5 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig @@ -73,6 +73,22 @@ config NAND_SUNXI The SPL driver only supports reading from the NAND using DMA transfers.
+if NAND_SUNXI
+config NAND_SUNXI_SPL_ECC_STRENGTH
- int "Allwinner NAND SPL ECC Strength"
- default 64
+config NAND_SUNXI_SPL_ECC_SIZE
- int "Allwinner NAND SPL ECC Step Size"
- default 1024
+config NAND_SUNXI_SPL_USABLE_PAGE_SIZE
- int "Allwinner NAND SPL Usable Page Size"
- default 1024
+endif
config NAND_ARASAN bool "Configure Arasan Nand" help

Hi,
On 08-11-16 17:21, Maxime Ripard wrote:
The SPL image needs to be built with a different ECC configuration than the U-Boot binary.
Add Kconfig options with defaults to provide a value that should work for anyone, but is still configurable if needs be.
Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com
Looks good to me:
Reviewed-by: Hans de Goede hdegoede@redhat.com
Regards,
Hans
drivers/mtd/nand/Kconfig | 16 ++++++++++++++++ 1 file changed, 16 insertions(+), 0 deletions(-)
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index df154bfd32b9..a60abb625ee5 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig @@ -73,6 +73,22 @@ config NAND_SUNXI The SPL driver only supports reading from the NAND using DMA transfers.
+if NAND_SUNXI
+config NAND_SUNXI_SPL_ECC_STRENGTH
- int "Allwinner NAND SPL ECC Strength"
- default 64
+config NAND_SUNXI_SPL_ECC_SIZE
- int "Allwinner NAND SPL ECC Step Size"
- default 1024
+config NAND_SUNXI_SPL_USABLE_PAGE_SIZE
- int "Allwinner NAND SPL Usable Page Size"
- default 1024
+endif
config NAND_ARASAN bool "Configure Arasan Nand" help

On Tue, 2016-11-08 at 17:21 +0100, Maxime Ripard wrote:
The SPL image needs to be built with a different ECC configuration than the U-Boot binary.
Add Kconfig options with defaults to provide a value that should work for anyone, but is still configurable if needs be.
Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com
drivers/mtd/nand/Kconfig | 16 ++++++++++++++++ 1 file changed, 16 insertions(+), 0 deletions(-)
Acked-by: Scott Wood oss@buserror.net
-Scott

Introduce a new sunxi-spl-with-ecc.bin image with already the right header, ECC, randomizer and padding for the BROM to be able to read it.
It needs to be flashed using a raw access to the NAND so that the controller doesn't change a thing to it, since we already have all the right parameters.
Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com --- Makefile | 3 +++ scripts/Makefile.spl | 12 ++++++++++++ 2 files changed, 15 insertions(+), 0 deletions(-)
diff --git a/Makefile b/Makefile index 37cbcb28f75e..12a248e297b5 100644 --- a/Makefile +++ b/Makefile @@ -1345,6 +1345,9 @@ spl/u-boot-spl: tools prepare \ spl/sunxi-spl.bin: spl/u-boot-spl @:
+spl/sunxi-spl-with-ecc.bin: spl/sunxi-spl.bin + @: + spl/u-boot-spl.sfp: spl/u-boot-spl @:
diff --git a/scripts/Makefile.spl b/scripts/Makefile.spl index e0b0117dc9b6..b41b4e427cc5 100644 --- a/scripts/Makefile.spl +++ b/scripts/Makefile.spl @@ -168,6 +168,7 @@ endif
ifdef CONFIG_ARCH_SUNXI ALL-y += $(obj)/sunxi-spl.bin +ALL-y += $(obj)/sunxi-spl-with-ecc.bin endif
ifeq ($(CONFIG_SYS_SOC),"at91") @@ -276,6 +277,17 @@ cmd_mksunxiboot = $(objtree)/tools/mksunxiboot $< $@ $(obj)/sunxi-spl.bin: $(obj)/$(SPL_BIN).bin FORCE $(call if_changed,mksunxiboot)
+quiet_cmd_sunxi_spl_image_builder = SUNXI_SPL_IMAGE_BUILDER $@ +cmd_sunxi_spl_image_builder = $(objtree)/tools/sunxi-spl-image-builder \ + -c $(CONFIG_NAND_SUNXI_SPL_ECC_STRENGTH)/$(CONFIG_NAND_SUNXI_SPL_ECC_SIZE) \ + -p $(CONFIG_SYS_NAND_PAGE_SIZE) \ + -o $(CONFIG_SYS_NAND_OOBSIZE) \ + -u $(CONFIG_NAND_SUNXI_SPL_USABLE_PAGE_SIZE) \ + -e $(CONFIG_SYS_NAND_BLOCK_SIZE) \ + -s -b $< $@ +$(obj)/sunxi-spl-with-ecc.bin: $(obj)/sunxi-spl.bin + $(call if_changed,sunxi_spl_image_builder) + # Rule to link u-boot-spl # May be overridden by arch/$(ARCH)/config.mk quiet_cmd_u-boot-spl ?= LD $@

On Tue, 8 Nov 2016 17:21:16 +0100 Maxime Ripard maxime.ripard@free-electrons.com wrote:
Introduce a new sunxi-spl-with-ecc.bin image with already the right header, ECC, randomizer and padding for the BROM to be able to read it.
It needs to be flashed using a raw access to the NAND so that the controller doesn't change a thing to it, since we already have all the right parameters.
Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com
Acked-by: Boris Brezillon boris.brezillon@free-electrons.com
Makefile | 3 +++ scripts/Makefile.spl | 12 ++++++++++++ 2 files changed, 15 insertions(+), 0 deletions(-)
diff --git a/Makefile b/Makefile index 37cbcb28f75e..12a248e297b5 100644 --- a/Makefile +++ b/Makefile @@ -1345,6 +1345,9 @@ spl/u-boot-spl: tools prepare \ spl/sunxi-spl.bin: spl/u-boot-spl @:
+spl/sunxi-spl-with-ecc.bin: spl/sunxi-spl.bin
- @:
spl/u-boot-spl.sfp: spl/u-boot-spl @:
diff --git a/scripts/Makefile.spl b/scripts/Makefile.spl index e0b0117dc9b6..b41b4e427cc5 100644 --- a/scripts/Makefile.spl +++ b/scripts/Makefile.spl @@ -168,6 +168,7 @@ endif
ifdef CONFIG_ARCH_SUNXI ALL-y += $(obj)/sunxi-spl.bin +ALL-y += $(obj)/sunxi-spl-with-ecc.bin endif
ifeq ($(CONFIG_SYS_SOC),"at91") @@ -276,6 +277,17 @@ cmd_mksunxiboot = $(objtree)/tools/mksunxiboot $< $@ $(obj)/sunxi-spl.bin: $(obj)/$(SPL_BIN).bin FORCE $(call if_changed,mksunxiboot)
+quiet_cmd_sunxi_spl_image_builder = SUNXI_SPL_IMAGE_BUILDER $@ +cmd_sunxi_spl_image_builder = $(objtree)/tools/sunxi-spl-image-builder \
-c $(CONFIG_NAND_SUNXI_SPL_ECC_STRENGTH)/$(CONFIG_NAND_SUNXI_SPL_ECC_SIZE) \
-p $(CONFIG_SYS_NAND_PAGE_SIZE) \
-o $(CONFIG_SYS_NAND_OOBSIZE) \
-u $(CONFIG_NAND_SUNXI_SPL_USABLE_PAGE_SIZE) \
-e $(CONFIG_SYS_NAND_BLOCK_SIZE) \
-s -b $< $@
+$(obj)/sunxi-spl-with-ecc.bin: $(obj)/sunxi-spl.bin
- $(call if_changed,sunxi_spl_image_builder)
# Rule to link u-boot-spl # May be overridden by arch/$(ARCH)/config.mk quiet_cmd_u-boot-spl ?= LD $@

Hi,
On 08-11-16 17:21, Maxime Ripard wrote:
Introduce a new sunxi-spl-with-ecc.bin image with already the right header, ECC, randomizer and padding for the BROM to be able to read it.
It needs to be flashed using a raw access to the NAND so that the controller doesn't change a thing to it, since we already have all the right parameters.
Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com
Looks good to me:
Reviewed-by: Hans de Goede hdegoede@redhat.com
Regards,
Hans
Makefile | 3 +++ scripts/Makefile.spl | 12 ++++++++++++ 2 files changed, 15 insertions(+), 0 deletions(-)
diff --git a/Makefile b/Makefile index 37cbcb28f75e..12a248e297b5 100644 --- a/Makefile +++ b/Makefile @@ -1345,6 +1345,9 @@ spl/u-boot-spl: tools prepare \ spl/sunxi-spl.bin: spl/u-boot-spl @:
+spl/sunxi-spl-with-ecc.bin: spl/sunxi-spl.bin
- @:
spl/u-boot-spl.sfp: spl/u-boot-spl @:
diff --git a/scripts/Makefile.spl b/scripts/Makefile.spl index e0b0117dc9b6..b41b4e427cc5 100644 --- a/scripts/Makefile.spl +++ b/scripts/Makefile.spl @@ -168,6 +168,7 @@ endif
ifdef CONFIG_ARCH_SUNXI ALL-y += $(obj)/sunxi-spl.bin +ALL-y += $(obj)/sunxi-spl-with-ecc.bin endif
ifeq ($(CONFIG_SYS_SOC),"at91") @@ -276,6 +277,17 @@ cmd_mksunxiboot = $(objtree)/tools/mksunxiboot $< $@ $(obj)/sunxi-spl.bin: $(obj)/$(SPL_BIN).bin FORCE $(call if_changed,mksunxiboot)
+quiet_cmd_sunxi_spl_image_builder = SUNXI_SPL_IMAGE_BUILDER $@ +cmd_sunxi_spl_image_builder = $(objtree)/tools/sunxi-spl-image-builder \
-c $(CONFIG_NAND_SUNXI_SPL_ECC_STRENGTH)/$(CONFIG_NAND_SUNXI_SPL_ECC_SIZE) \
-p $(CONFIG_SYS_NAND_PAGE_SIZE) \
-o $(CONFIG_SYS_NAND_OOBSIZE) \
-u $(CONFIG_NAND_SUNXI_SPL_USABLE_PAGE_SIZE) \
-e $(CONFIG_SYS_NAND_BLOCK_SIZE) \
-s -b $< $@
+$(obj)/sunxi-spl-with-ecc.bin: $(obj)/sunxi-spl.bin
- $(call if_changed,sunxi_spl_image_builder)
# Rule to link u-boot-spl # May be overridden by arch/$(ARCH)/config.mk quiet_cmd_u-boot-spl ?= LD $@

Hi,
On 14-11-16 12:19, Hans de Goede wrote:
Hi,
On 08-11-16 17:21, Maxime Ripard wrote:
Introduce a new sunxi-spl-with-ecc.bin image with already the right header, ECC, randomizer and padding for the BROM to be able to read it.
It needs to be flashed using a raw access to the NAND so that the controller doesn't change a thing to it, since we already have all the right parameters.
Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com
Looks good to me:
Reviewed-by: Hans de Goede hdegoede@redhat.com
Scrap that, this causes all sunxi boars to fail to build:
+--page is missing +sunxi-nand-image-builder 2016.11-rc3-00069-gabe4d57 +Usage: sunxi-nand-image-builder [OPTIONS] source-image output-image +Creates a raw NAND image that can be read by the sunxi NAND controller. +-h --help Display this help and exit +-c <str>/<step> --ecc=<str>/<step> ECC config (strength/step-size) +-p <size> --page=<size> Page size +-o <size> --oob=<size> OOB size +-u <size> --usable=<size> Usable page size +-e <size> --eraseblock=<size> Erase block size +-b --boot0 Build a boot0 image. +-s --scramble Scramble data + Valid ECC strengths: 16, 24, 28, 32, 40, 48, 56, 60 and 64 + Valid ECC step size: 512 and 1024 +If you are building a boot0 image, you'll have specify extra options. +These options should be chosen based on the layouts described here: + http://linux-sunxi.org/NAND#More_information_on_BROM_NAND + --usable should be assigned the 'Hardware page' value + --ecc should be assigned the 'ECC capacity'/'ECC page' values + --usable should be smaller than --page +The --address option is only required for non-boot0 images that are +meant to be programmed at a non eraseblock aligned offset. +Examples: + The H27UCG8T2BTR-BC NAND exposes + * 16k pages + * 1280 OOB bytes per page + * 4M eraseblocks + * requires data scrambling + * expects a minimum ECC of 40bits/1024bytes + A normal image can be generated with + sunxi-nand-image-builder -p 16384 -o 1280 -e 0x400000 -s -c 40/1024 + A boot0 image can be generated with + sunxi-nand-image-builder -p 16384 -o 1280 -e 0x400000 -s -b -u 4096 -c 64/1024 +make[2]: *** [spl/sunxi-spl-with-ecc.bin] Error 255 +make[1]: *** [spl/u-boot-spl] Error 2
I've dropped this patch.
Regards,
Hans
Regards,
Hans
Makefile | 3 +++ scripts/Makefile.spl | 12 ++++++++++++ 2 files changed, 15 insertions(+), 0 deletions(-)
diff --git a/Makefile b/Makefile index 37cbcb28f75e..12a248e297b5 100644 --- a/Makefile +++ b/Makefile @@ -1345,6 +1345,9 @@ spl/u-boot-spl: tools prepare \ spl/sunxi-spl.bin: spl/u-boot-spl @:
+spl/sunxi-spl-with-ecc.bin: spl/sunxi-spl.bin
- @:
spl/u-boot-spl.sfp: spl/u-boot-spl @:
diff --git a/scripts/Makefile.spl b/scripts/Makefile.spl index e0b0117dc9b6..b41b4e427cc5 100644 --- a/scripts/Makefile.spl +++ b/scripts/Makefile.spl @@ -168,6 +168,7 @@ endif
ifdef CONFIG_ARCH_SUNXI ALL-y += $(obj)/sunxi-spl.bin +ALL-y += $(obj)/sunxi-spl-with-ecc.bin endif
ifeq ($(CONFIG_SYS_SOC),"at91") @@ -276,6 +277,17 @@ cmd_mksunxiboot = $(objtree)/tools/mksunxiboot $< $@ $(obj)/sunxi-spl.bin: $(obj)/$(SPL_BIN).bin FORCE $(call if_changed,mksunxiboot)
+quiet_cmd_sunxi_spl_image_builder = SUNXI_SPL_IMAGE_BUILDER $@ +cmd_sunxi_spl_image_builder = $(objtree)/tools/sunxi-spl-image-builder \
-c $(CONFIG_NAND_SUNXI_SPL_ECC_STRENGTH)/$(CONFIG_NAND_SUNXI_SPL_ECC_SIZE) \
-p $(CONFIG_SYS_NAND_PAGE_SIZE) \
-o $(CONFIG_SYS_NAND_OOBSIZE) \
-u $(CONFIG_NAND_SUNXI_SPL_USABLE_PAGE_SIZE) \
-e $(CONFIG_SYS_NAND_BLOCK_SIZE) \
-s -b $< $@
+$(obj)/sunxi-spl-with-ecc.bin: $(obj)/sunxi-spl.bin
- $(call if_changed,sunxi_spl_image_builder)
# Rule to link u-boot-spl # May be overridden by arch/$(ARCH)/config.mk quiet_cmd_u-boot-spl ?= LD $@

The CHIP Pro is a SoM that features the GR8 SIP, an AXP209, a BT/WiFi chip and a 512MiB SLC NAND.
This it's an SLC NAND, it doesn't suffer the same drawbacks than found on the MLC NANDs, and we can enable it right away.
Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com --- configs/CHIP_pro_defconfig | 27 +++++++++++++++++++++++++++ 1 file changed, 27 insertions(+), 0 deletions(-) create mode 100644 configs/CHIP_pro_defconfig
diff --git a/configs/CHIP_pro_defconfig b/configs/CHIP_pro_defconfig new file mode 100644 index 000000000000..6008f44f485c --- /dev/null +++ b/configs/CHIP_pro_defconfig @@ -0,0 +1,27 @@ +CONFIG_ARM=y +CONFIG_ARCH_SUNXI=y +CONFIG_SPL_I2C_SUPPORT=y +# CONFIG_SPL_MMC_SUPPORT is not set +CONFIG_MACH_SUN5I=y +CONFIG_DRAM_TIMINGS_DDR3_800E_1066G_1333J=y +# CONFIG_MMC is not set +CONFIG_USB0_VBUS_PIN="PB10" +CONFIG_DEFAULT_DEVICE_TREE="ntc-gr8-chip-pro" +CONFIG_SYS_EXTRA_OPTIONS="CONS_INDEX=2,SYS_NAND_BLOCK_SIZE=0x40000,SYS_NAND_PAGE_SIZE=4096,SYS_NAND_OOBSIZE=256,ENV_IS_IN_NAND" +CONFIG_SPL=y +# CONFIG_CMD_IMLS is not set +CONFIG_CMD_DFU=y +CONFIG_CMD_USB_MASS_STORAGE=y +CONFIG_DFU_RAM=y +CONFIG_AXP_ALDO3_VOLT=3300 +CONFIG_AXP_ALDO4_VOLT=3300 +CONFIG_USB_EHCI_HCD=y +CONFIG_USB_MUSB_GADGET=y +CONFIG_USB_GADGET=y +CONFIG_USB_GADGET_DOWNLOAD=y +CONFIG_G_DNL_MANUFACTURER="Allwinner Technology" +CONFIG_G_DNL_VENDOR_NUM=0x1f3a +CONFIG_G_DNL_PRODUCT_NUM=0x1010 +CONFIG_NAND_SUNXI=y +CONFIG_SPL_NAND_SUPPORT=y +CONFIG_MTD_UBI=y

Hi,
On 08-11-16 17:21, Maxime Ripard wrote:
The CHIP Pro is a SoM that features the GR8 SIP, an AXP209, a BT/WiFi chip and a 512MiB SLC NAND.
This it's an SLC NAND, it doesn't suffer the same drawbacks than found on the MLC NANDs, and we can enable it right away.
Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com
Patch 3/3 needs a v3 before this can be merged, otherwise this looks good to me:
Reviewed-by: Hans de Goede hdegoede@redhat.com
Regards,
Hans
configs/CHIP_pro_defconfig | 27 +++++++++++++++++++++++++++ 1 file changed, 27 insertions(+), 0 deletions(-) create mode 100644 configs/CHIP_pro_defconfig
diff --git a/configs/CHIP_pro_defconfig b/configs/CHIP_pro_defconfig new file mode 100644 index 000000000000..6008f44f485c --- /dev/null +++ b/configs/CHIP_pro_defconfig @@ -0,0 +1,27 @@ +CONFIG_ARM=y +CONFIG_ARCH_SUNXI=y +CONFIG_SPL_I2C_SUPPORT=y +# CONFIG_SPL_MMC_SUPPORT is not set +CONFIG_MACH_SUN5I=y +CONFIG_DRAM_TIMINGS_DDR3_800E_1066G_1333J=y +# CONFIG_MMC is not set +CONFIG_USB0_VBUS_PIN="PB10" +CONFIG_DEFAULT_DEVICE_TREE="ntc-gr8-chip-pro" +CONFIG_SYS_EXTRA_OPTIONS="CONS_INDEX=2,SYS_NAND_BLOCK_SIZE=0x40000,SYS_NAND_PAGE_SIZE=4096,SYS_NAND_OOBSIZE=256,ENV_IS_IN_NAND" +CONFIG_SPL=y +# CONFIG_CMD_IMLS is not set +CONFIG_CMD_DFU=y +CONFIG_CMD_USB_MASS_STORAGE=y +CONFIG_DFU_RAM=y +CONFIG_AXP_ALDO3_VOLT=3300 +CONFIG_AXP_ALDO4_VOLT=3300 +CONFIG_USB_EHCI_HCD=y +CONFIG_USB_MUSB_GADGET=y +CONFIG_USB_GADGET=y +CONFIG_USB_GADGET_DOWNLOAD=y +CONFIG_G_DNL_MANUFACTURER="Allwinner Technology" +CONFIG_G_DNL_VENDOR_NUM=0x1f3a +CONFIG_G_DNL_PRODUCT_NUM=0x1010 +CONFIG_NAND_SUNXI=y +CONFIG_SPL_NAND_SUPPORT=y +CONFIG_MTD_UBI=y

Hello Maxime,
Am 08.11.2016 um 17:21 schrieb Maxime Ripard:
The CHIP Pro is a SoM made by NextThing Co, and that embeds a GR8 SIP, an AXP209 PMIC, a WiFi BT chip and a 512MB SLC NAND.
Since the first Allwinner device coming whit an SLC NAND that doesn't have the shortcomings (and breakages) the MLC NAND has, we can finally enable the NAND support on a board by default.
This is the occasion to introduce a bunch of additions needed imo to be able to come up with a sane NAND support for our users.
The biggest pain point is that the BROM uses a different ECC and randomizer configuration than for the rest of the NAND. In order to lessen the number of bitflips, you also need to pad with random data the SPL image.
Since it's quite tedious to do right (and most users won't be able to figure it out) and since if it is not done right, it will eventually turn into an unusable system (which is bad UX), we think that the best solution is to generate an SPL image that already embeds all this. We'll possible have to do the same thing for the U-Boot image (at least for the random padding) on MLC NANDs.
The only drawback from that is that you need to flash it raw, instead of using the usual nand write, but it's just a different command, nothing major anyway.
In order to flash it, from a device switched in FEL, on your host: sunxi-fel spl spl/sunxi-spl.bin sunxi-fel write 0x4a000000 u-boot-dtb.bin sunxi-fel write 0x43000000 spl/sunxi-spl-with-ecc.bin sunxi-fel exe 0x4a000000
And on the board, once u-boot is running (assuming the NAND is already erased):
nand write.raw.noverify 0x43000000 0 40 nand write.raw.noverify 0x43000000 0x400000 40
nand write 0x4a000000 0x800000 0xc0000
I also encountered some weird bug in the private libgcc that prevents U-Boot from loading. Disabling CONFIG_USE_PRIVATE_LIBGCC fixes that.
What was the problem?
Let me know what you think, Maxime
Boris Brezillon (1): mtd: nand: add support for the TC58NVG2S0H chip
Hans de Goede (1): sunxi: Enable UBI and NAND support
Maxime Ripard (5): sunxi: Sync GR8 DTS and AXP209 with the kernel tools: sunxi: Add spl image builder nand: sunxi: Add options for the SPL NAND configuration scripts: sunxi: Build an raw SPL image sunxi: Add support for the CHIP Pro
Makefile | 3 +- arch/arm/dts/Makefile | 1 +- arch/arm/dts/axp209.dtsi | 6 +- arch/arm/dts/ntc-gr8-chip-pro.dts | 266 +++++++- arch/arm/dts/ntc-gr8.dtsi | 1132 ++++++++++++++++++++++++++++++- configs/CHIP_pro_defconfig | 27 +- drivers/mtd/nand/Kconfig | 16 +- drivers/mtd/nand/nand_ids.c | 3 +- include/configs/sunxi-common.h | 26 +- scripts/Makefile.spl | 12 +- tools/.gitignore | 1 +- tools/Makefile | 1 +- tools/sunxi-spl-image-builder.c | 1113 +++++++++++++++++++++++++++++- 13 files changed, 2603 insertions(+), 4 deletions(-) create mode 100644 arch/arm/dts/ntc-gr8-chip-pro.dts create mode 100644 arch/arm/dts/ntc-gr8.dtsi create mode 100644 configs/CHIP_pro_defconfig create mode 100644 tools/sunxi-spl-image-builder.c
base-commit: d8bdfc80da39211d95f10d24e79f2e867305f71b
Can you please add a README file, where the above things are explained?
Thanks!
bye, Heiko

Hi Heiko,
On Wed, Nov 09, 2016 at 08:47:12AM +0100, Heiko Schocher wrote:
Am 08.11.2016 um 17:21 schrieb Maxime Ripard:
The CHIP Pro is a SoM made by NextThing Co, and that embeds a GR8 SIP, an AXP209 PMIC, a WiFi BT chip and a 512MB SLC NAND.
Since the first Allwinner device coming whit an SLC NAND that doesn't have the shortcomings (and breakages) the MLC NAND has, we can finally enable the NAND support on a board by default.
This is the occasion to introduce a bunch of additions needed imo to be able to come up with a sane NAND support for our users.
The biggest pain point is that the BROM uses a different ECC and randomizer configuration than for the rest of the NAND. In order to lessen the number of bitflips, you also need to pad with random data the SPL image.
Since it's quite tedious to do right (and most users won't be able to figure it out) and since if it is not done right, it will eventually turn into an unusable system (which is bad UX), we think that the best solution is to generate an SPL image that already embeds all this. We'll possible have to do the same thing for the U-Boot image (at least for the random padding) on MLC NANDs.
The only drawback from that is that you need to flash it raw, instead of using the usual nand write, but it's just a different command, nothing major anyway.
In order to flash it, from a device switched in FEL, on your host: sunxi-fel spl spl/sunxi-spl.bin sunxi-fel write 0x4a000000 u-boot-dtb.bin sunxi-fel write 0x43000000 spl/sunxi-spl-with-ecc.bin sunxi-fel exe 0x4a000000
And on the board, once u-boot is running (assuming the NAND is already erased):
nand write.raw.noverify 0x43000000 0 40 nand write.raw.noverify 0x43000000 0x400000 40
nand write 0x4a000000 0x800000 0xc0000
I also encountered some weird bug in the private libgcc that prevents U-Boot from loading. Disabling CONFIG_USE_PRIVATE_LIBGCC fixes that.
What was the problem?
It has been reported here: http://lists.denx.de/pipermail/u-boot/2016-August/264513.html
Let me know what you think, Maxime
Boris Brezillon (1): mtd: nand: add support for the TC58NVG2S0H chip
Hans de Goede (1): sunxi: Enable UBI and NAND support
Maxime Ripard (5): sunxi: Sync GR8 DTS and AXP209 with the kernel tools: sunxi: Add spl image builder nand: sunxi: Add options for the SPL NAND configuration scripts: sunxi: Build an raw SPL image sunxi: Add support for the CHIP Pro
Makefile | 3 +- arch/arm/dts/Makefile | 1 +- arch/arm/dts/axp209.dtsi | 6 +- arch/arm/dts/ntc-gr8-chip-pro.dts | 266 +++++++- arch/arm/dts/ntc-gr8.dtsi | 1132 ++++++++++++++++++++++++++++++- configs/CHIP_pro_defconfig | 27 +- drivers/mtd/nand/Kconfig | 16 +- drivers/mtd/nand/nand_ids.c | 3 +- include/configs/sunxi-common.h | 26 +- scripts/Makefile.spl | 12 +- tools/.gitignore | 1 +- tools/Makefile | 1 +- tools/sunxi-spl-image-builder.c | 1113 +++++++++++++++++++++++++++++- 13 files changed, 2603 insertions(+), 4 deletions(-) create mode 100644 arch/arm/dts/ntc-gr8-chip-pro.dts create mode 100644 arch/arm/dts/ntc-gr8.dtsi create mode 100644 configs/CHIP_pro_defconfig create mode 100644 tools/sunxi-spl-image-builder.c
base-commit: d8bdfc80da39211d95f10d24e79f2e867305f71b
Can you please add a README file, where the above things are explained?
Sure, where do you want me to put it? in doc/README.* or somewhere else?
Thanks, Maxime

Hello Maxime,
Am 09.11.2016 um 15:44 schrieb Maxime Ripard:
Hi Heiko,
On Wed, Nov 09, 2016 at 08:47:12AM +0100, Heiko Schocher wrote:
Am 08.11.2016 um 17:21 schrieb Maxime Ripard:
The CHIP Pro is a SoM made by NextThing Co, and that embeds a GR8 SIP, an AXP209 PMIC, a WiFi BT chip and a 512MB SLC NAND.
Since the first Allwinner device coming whit an SLC NAND that doesn't have the shortcomings (and breakages) the MLC NAND has, we can finally enable the NAND support on a board by default.
This is the occasion to introduce a bunch of additions needed imo to be able to come up with a sane NAND support for our users.
The biggest pain point is that the BROM uses a different ECC and randomizer configuration than for the rest of the NAND. In order to lessen the number of bitflips, you also need to pad with random data the SPL image.
Since it's quite tedious to do right (and most users won't be able to figure it out) and since if it is not done right, it will eventually turn into an unusable system (which is bad UX), we think that the best solution is to generate an SPL image that already embeds all this. We'll possible have to do the same thing for the U-Boot image (at least for the random padding) on MLC NANDs.
The only drawback from that is that you need to flash it raw, instead of using the usual nand write, but it's just a different command, nothing major anyway.
In order to flash it, from a device switched in FEL, on your host: sunxi-fel spl spl/sunxi-spl.bin sunxi-fel write 0x4a000000 u-boot-dtb.bin sunxi-fel write 0x43000000 spl/sunxi-spl-with-ecc.bin sunxi-fel exe 0x4a000000
And on the board, once u-boot is running (assuming the NAND is already erased):
nand write.raw.noverify 0x43000000 0 40 nand write.raw.noverify 0x43000000 0x400000 40
nand write 0x4a000000 0x800000 0xc0000
I also encountered some weird bug in the private libgcc that prevents U-Boot from loading. Disabling CONFIG_USE_PRIVATE_LIBGCC fixes that.
What was the problem?
It has been reported here: http://lists.denx.de/pipermail/u-boot/2016-August/264513.html
Hmm.. could not find, what was the real problem ...
Let me know what you think, Maxime
Boris Brezillon (1): mtd: nand: add support for the TC58NVG2S0H chip
Hans de Goede (1): sunxi: Enable UBI and NAND support
Maxime Ripard (5): sunxi: Sync GR8 DTS and AXP209 with the kernel tools: sunxi: Add spl image builder nand: sunxi: Add options for the SPL NAND configuration scripts: sunxi: Build an raw SPL image sunxi: Add support for the CHIP Pro
Makefile | 3 +- arch/arm/dts/Makefile | 1 +- arch/arm/dts/axp209.dtsi | 6 +- arch/arm/dts/ntc-gr8-chip-pro.dts | 266 +++++++- arch/arm/dts/ntc-gr8.dtsi | 1132 ++++++++++++++++++++++++++++++- configs/CHIP_pro_defconfig | 27 +- drivers/mtd/nand/Kconfig | 16 +- drivers/mtd/nand/nand_ids.c | 3 +- include/configs/sunxi-common.h | 26 +- scripts/Makefile.spl | 12 +- tools/.gitignore | 1 +- tools/Makefile | 1 +- tools/sunxi-spl-image-builder.c | 1113 +++++++++++++++++++++++++++++- 13 files changed, 2603 insertions(+), 4 deletions(-) create mode 100644 arch/arm/dts/ntc-gr8-chip-pro.dts create mode 100644 arch/arm/dts/ntc-gr8.dtsi create mode 100644 configs/CHIP_pro_defconfig create mode 100644 tools/sunxi-spl-image-builder.c
base-commit: d8bdfc80da39211d95f10d24e79f2e867305f71b
Can you please add a README file, where the above things are explained?
Sure, where do you want me to put it? in doc/README.* or somewhere else?
Yes, may doc/README.sunxi ?
Thanks!
bye, Heiko

On Thu, Nov 10, 2016 at 12:57:09PM +0100, Heiko Schocher wrote:
Hello Maxime,
Am 09.11.2016 um 15:44 schrieb Maxime Ripard:
Hi Heiko,
On Wed, Nov 09, 2016 at 08:47:12AM +0100, Heiko Schocher wrote:
Am 08.11.2016 um 17:21 schrieb Maxime Ripard:
The CHIP Pro is a SoM made by NextThing Co, and that embeds a GR8 SIP, an AXP209 PMIC, a WiFi BT chip and a 512MB SLC NAND.
Since the first Allwinner device coming whit an SLC NAND that doesn't have the shortcomings (and breakages) the MLC NAND has, we can finally enable the NAND support on a board by default.
This is the occasion to introduce a bunch of additions needed imo to be able to come up with a sane NAND support for our users.
The biggest pain point is that the BROM uses a different ECC and randomizer configuration than for the rest of the NAND. In order to lessen the number of bitflips, you also need to pad with random data the SPL image.
Since it's quite tedious to do right (and most users won't be able to figure it out) and since if it is not done right, it will eventually turn into an unusable system (which is bad UX), we think that the best solution is to generate an SPL image that already embeds all this. We'll possible have to do the same thing for the U-Boot image (at least for the random padding) on MLC NANDs.
The only drawback from that is that you need to flash it raw, instead of using the usual nand write, but it's just a different command, nothing major anyway.
In order to flash it, from a device switched in FEL, on your host: sunxi-fel spl spl/sunxi-spl.bin sunxi-fel write 0x4a000000 u-boot-dtb.bin sunxi-fel write 0x43000000 spl/sunxi-spl-with-ecc.bin sunxi-fel exe 0x4a000000
And on the board, once u-boot is running (assuming the NAND is already erased):
nand write.raw.noverify 0x43000000 0 40 nand write.raw.noverify 0x43000000 0x400000 40
nand write 0x4a000000 0x800000 0xc0000
I also encountered some weird bug in the private libgcc that prevents U-Boot from loading. Disabling CONFIG_USE_PRIVATE_LIBGCC fixes that.
What was the problem?
It has been reported here: http://lists.denx.de/pipermail/u-boot/2016-August/264513.html
Hmm.. could not find, what was the real problem ...
And since it's another area we're just borrowing kernel code for, it'd be good to figure out what odd corner-case is going wrong somewhere and what the fix is.
participants (6)
-
Boris Brezillon
-
Hans de Goede
-
Heiko Schocher
-
Maxime Ripard
-
Scott Wood
-
Tom Rini