
Hi
On Tue, Dec 20, 2022 at 11:22 AM Roger Quadros rogerq@kernel.org wrote:
The BCH detection hardware can generate ECC bytes for multiple sectors in one go. Use that feature.
correct() only corrects one sector at a time so we need to call it repeatedly for each sector.
Signed-off-by: Roger Quadros rogerq@kernel.org Reviewed-by: Michael Trimarchi michael@amarulasolutions.com
drivers/mtd/nand/raw/omap_gpmc.c | 325 +++++++++++++++++++++---------- 1 file changed, 223 insertions(+), 102 deletions(-)
diff --git a/drivers/mtd/nand/raw/omap_gpmc.c b/drivers/mtd/nand/raw/omap_gpmc.c index 69fc09be097..e772a914c88 100644 --- a/drivers/mtd/nand/raw/omap_gpmc.c +++ b/drivers/mtd/nand/raw/omap_gpmc.c @@ -27,6 +27,9 @@
#define BADBLOCK_MARKER_LENGTH 2 #define SECTOR_BYTES 512 +#define ECCSIZE0_SHIFT 12 +#define ECCSIZE1_SHIFT 22 +#define ECC1RESULTSIZE 0x1 #define ECCCLEAR (0x1 << 8) #define ECCRESULTREG1 (0x1 << 0) /* 4 bit padding to make byte aligned, 56 = 52 + 4 */ @@ -186,72 +189,35 @@ static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat, __maybe_unused static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode) {
struct nand_chip *nand = mtd_to_nand(mtd);
struct omap_nand_info *info = nand_get_controller_data(nand);
struct nand_chip *nand = mtd_to_nand(mtd);
struct omap_nand_info *info = nand_get_controller_data(nand); unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0;
unsigned int ecc_algo = 0;
unsigned int bch_type = 0;
unsigned int eccsize1 = 0x00, eccsize0 = 0x00, bch_wrapmode = 0x00;
u32 ecc_size_config_val = 0;
u32 ecc_config_val = 0;
int cs = info->cs;
u32 val;
/* configure GPMC for specific ecc-scheme */
switch (info->ecc_scheme) {
case OMAP_ECC_HAM1_CODE_SW:
return;
case OMAP_ECC_HAM1_CODE_HW:
ecc_algo = 0x0;
bch_type = 0x0;
bch_wrapmode = 0x00;
eccsize0 = 0xFF;
eccsize1 = 0xFF;
/* Clear ecc and enable bits */
writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
/* program ecc and result sizes */
val = ((((nand->ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
ECC1RESULTSIZE);
writel(val, &gpmc_cfg->ecc_size_config);
switch (mode) {
case NAND_ECC_READ:
case NAND_ECC_WRITE:
writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control); break;
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
case OMAP_ECC_BCH8_CODE_HW:
ecc_algo = 0x1;
bch_type = 0x1;
if (mode == NAND_ECC_WRITE) {
bch_wrapmode = 0x01;
eccsize0 = 0; /* extra bits in nibbles per sector */
eccsize1 = 28; /* OOB bits in nibbles per sector */
} else {
bch_wrapmode = 0x01;
eccsize0 = 26; /* ECC bits in nibbles per sector */
eccsize1 = 2; /* non-ECC bits in nibbles per sector */
}
break;
case OMAP_ECC_BCH16_CODE_HW:
ecc_algo = 0x1;
bch_type = 0x2;
if (mode == NAND_ECC_WRITE) {
bch_wrapmode = 0x01;
eccsize0 = 0; /* extra bits in nibbles per sector */
eccsize1 = 52; /* OOB bits in nibbles per sector */
} else {
bch_wrapmode = 0x01;
eccsize0 = 52; /* ECC bits in nibbles per sector */
eccsize1 = 0; /* non-ECC bits in nibbles per sector */
}
case NAND_ECC_READSYN:
writel(ECCCLEAR, &gpmc_cfg->ecc_control); break; default:
return;
printf("%s: error: unrecognized Mode[%d]!\n", __func__, mode);
break; }
/* Clear ecc and enable bits */
writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
/* Configure ecc size for BCH */
ecc_size_config_val = (eccsize1 << 22) | (eccsize0 << 12);
writel(ecc_size_config_val, &gpmc_cfg->ecc_size_config);
/* Configure device details for BCH engine */
ecc_config_val = ((ecc_algo << 16) | /* HAM1 | BCHx */
(bch_type << 12) | /* BCH4/BCH8/BCH16 */
(bch_wrapmode << 8) | /* wrap mode */
(dev_width << 7) | /* bus width */
(0x0 << 4) | /* number of sectors */
(cs << 1) | /* ECC CS */
(0x1)); /* enable ECC */
writel(ecc_config_val, &gpmc_cfg->ecc_config);
/* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
val = (dev_width << 7) | (info->cs << 1) | (0x1);
writel(val, &gpmc_cfg->ecc_config);
}
/* @@ -270,6 +236,124 @@ static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode) */ static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat, uint8_t *ecc_code) +{
u32 val;
val = readl(&gpmc_cfg->ecc1_result);
ecc_code[0] = val & 0xFF;
ecc_code[1] = (val >> 16) & 0xFF;
ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
return 0;
+}
+/* GPMC ecc engine settings for read */ +#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */ +#define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */ +#define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */ +#define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */ +#define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
+/* GPMC ecc engine settings for write */ +#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */ +#define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */ +#define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
+/**
- omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
- @mtd: MTD device structure
- @mode: Read/Write mode
- When using BCH with SW correction (i.e. no ELM), sector size is set
- to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
- for both reading and writing with:
- eccsize0 = 0 (no additional protected byte in spare area)
- eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
- */
+static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd,
int mode)
+{
unsigned int bch_type;
unsigned int dev_width, nsectors;
struct nand_chip *chip = mtd_to_nand(mtd);
struct omap_nand_info *info = nand_get_controller_data(chip);
u32 val, wr_mode;
unsigned int ecc_size1, ecc_size0;
/* GPMC configurations for calculating ECC */
switch (info->ecc_scheme) {
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
bch_type = 1;
nsectors = 1;
wr_mode = BCH_WRAPMODE_6;
ecc_size0 = BCH_ECC_SIZE0;
ecc_size1 = BCH_ECC_SIZE1;
break;
case OMAP_ECC_BCH8_CODE_HW:
bch_type = 1;
nsectors = chip->ecc.steps;
if (mode == NAND_ECC_READ) {
wr_mode = BCH_WRAPMODE_1;
ecc_size0 = BCH8R_ECC_SIZE0;
ecc_size1 = BCH8R_ECC_SIZE1;
} else {
wr_mode = BCH_WRAPMODE_6;
ecc_size0 = BCH_ECC_SIZE0;
ecc_size1 = BCH_ECC_SIZE1;
}
break;
case OMAP_ECC_BCH16_CODE_HW:
bch_type = 0x2;
nsectors = chip->ecc.steps;
if (mode == NAND_ECC_READ) {
wr_mode = 0x01;
ecc_size0 = 52; /* ECC bits in nibbles per sector */
ecc_size1 = 0; /* non-ECC bits in nibbles per sector */
} else {
wr_mode = 0x01;
ecc_size0 = 0; /* extra bits in nibbles per sector */
ecc_size1 = 52; /* OOB bits in nibbles per sector */
}
break;
default:
return;
}
writel(ECCRESULTREG1, &gpmc_cfg->ecc_control);
/* Configure ecc size for BCH */
val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
writel(val, &gpmc_cfg->ecc_size_config);
dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
/* BCH configuration */
val = ((1 << 16) | /* enable BCH */
(bch_type << 12) | /* BCH4/BCH8/BCH16 */
(wr_mode << 8) | /* wrap mode */
(dev_width << 7) | /* bus width */
(((nsectors - 1) & 0x7) << 4) | /* number of sectors */
(info->cs << 1) | /* ECC CS */
(0x1)); /* enable ECC */
writel(val, &gpmc_cfg->ecc_config);
/* Clear ecc and enable bits */
writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
+}
+/**
- _omap_calculate_ecc_bch - Generate BCH ECC bytes for one sector
- @mtd: MTD device structure
- @dat: The pointer to data on which ecc is computed
- @ecc_code: The ecc_code buffer
- @sector: The sector number (for a multi sector page)
- Support calculating of BCH4/8/16 ECC vectors for one sector
- within a page. Sector number is in @sector.
- */
+static int _omap_calculate_ecc_bch(struct mtd_info *mtd, const u8 *dat,
u8 *ecc_code, int sector)
{ struct nand_chip *chip = mtd_to_nand(mtd); struct omap_nand_info *info = nand_get_controller_data(chip); @@ -278,17 +362,11 @@ static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat, int8_t i = 0, j;
switch (info->ecc_scheme) {
case OMAP_ECC_HAM1_CODE_HW:
val = readl(&gpmc_cfg->ecc1_result);
ecc_code[0] = val & 0xFF;
ecc_code[1] = (val >> 16) & 0xFF;
ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
break;
#ifdef CONFIG_BCH case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: #endif case OMAP_ECC_BCH8_CODE_HW:
ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
ptr = &gpmc_cfg->bch_result_0_3[sector].bch_result_x[3]; val = readl(ptr); ecc_code[i++] = (val >> 0) & 0xFF; ptr--;
@@ -300,23 +378,24 @@ static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat, ecc_code[i++] = (val >> 0) & 0xFF; ptr--; }
break; case OMAP_ECC_BCH16_CODE_HW:
val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[2]);
val = readl(&gpmc_cfg->bch_result_4_6[sector].bch_result_x[2]); ecc_code[i++] = (val >> 8) & 0xFF; ecc_code[i++] = (val >> 0) & 0xFF;
val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[1]);
val = readl(&gpmc_cfg->bch_result_4_6[sector].bch_result_x[1]); ecc_code[i++] = (val >> 24) & 0xFF; ecc_code[i++] = (val >> 16) & 0xFF; ecc_code[i++] = (val >> 8) & 0xFF; ecc_code[i++] = (val >> 0) & 0xFF;
val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[0]);
val = readl(&gpmc_cfg->bch_result_4_6[sector].bch_result_x[0]); ecc_code[i++] = (val >> 24) & 0xFF; ecc_code[i++] = (val >> 16) & 0xFF; ecc_code[i++] = (val >> 8) & 0xFF; ecc_code[i++] = (val >> 0) & 0xFF; for (j = 3; j >= 0; j--) {
val = readl(&gpmc_cfg->bch_result_0_3[0].bch_result_x[j]
val = readl(&gpmc_cfg->bch_result_0_3[sector].bch_result_x[j] ); ecc_code[i++] = (val >> 24) & 0xFF; ecc_code[i++] = (val >> 16) & 0xFF;
@@ -329,18 +408,18 @@ static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat, } /* ECC scheme specific syndrome customizations */ switch (info->ecc_scheme) {
case OMAP_ECC_HAM1_CODE_HW:
break;
#ifdef CONFIG_BCH case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
/* Add constant polynomial to remainder, so that
* ECC of blank pages results in 0x0 on reading back
*/ for (i = 0; i < chip->ecc.bytes; i++)
*(ecc_code + i) = *(ecc_code + i) ^
bch8_polynomial[i];
ecc_code[i] ^= bch8_polynomial[i]; break;
#endif case OMAP_ECC_BCH8_CODE_HW:
ecc_code[chip->ecc.bytes - 1] = 0x00;
/* Set 14th ECC byte as 0x0 for ROM compatibility */
ecc_code[chip->ecc.bytes - 1] = 0x0; break; case OMAP_ECC_BCH16_CODE_HW: break;
@@ -350,6 +429,22 @@ static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat, return 0; }
+/**
- omap_calculate_ecc_bch - ECC generator for 1 sector
- @mtd: MTD device structure
- @dat: The pointer to data on which ecc is computed
- @ecc_code: The ecc_code buffer
- Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
- when SW based correction is required as ECC is required for one sector
- at a time.
- */
+static int omap_calculate_ecc_bch(struct mtd_info *mtd,
const u_char *dat, u_char *ecc_calc)
-static int omap_calculate_ecc_bch(struct mtd_info *mtd, +static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd, const u_char *dat, u_char *ecc_calc)
Acked-by: Michael Trimarchi michael@amarulasolutions.com
+{
return _omap_calculate_ecc_bch(mtd, dat, ecc_calc, 0);
+}
static inline void omap_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { struct nand_chip *chip = mtd_to_nand(mtd); @@ -474,6 +569,35 @@ static void omap_nand_read_prefetch(struct mtd_info *mtd, uint8_t *buf, int len) #endif /* CONFIG_NAND_OMAP_GPMC_PREFETCH */
#ifdef CONFIG_NAND_OMAP_ELM
+/**
- omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
- @mtd: MTD device structure
- @dat: The pointer to data on which ecc is computed
- @ecc_code: The ecc_code buffer
- Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
- */
+static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
const u_char *dat, u_char *ecc_calc)
+{
struct nand_chip *chip = mtd_to_nand(mtd);
int eccbytes = chip->ecc.bytes;
unsigned long nsectors;
int i, ret;
nsectors = ((readl(&gpmc_cfg->ecc_config) >> 4) & 0x7) + 1;
for (i = 0; i < nsectors; i++) {
ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
if (ret)
return ret;
ecc_calc += eccbytes;
}
return 0;
+}
/*
- omap_reverse_list - re-orders list elements in reverse order [internal]
- @list: pointer to start of list
@@ -626,52 +750,49 @@ static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip, { int i, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes;
int ecctotal = chip->ecc.total; int eccsteps = chip->ecc.steps; uint8_t *p = buf; uint8_t *ecc_calc = chip->buffers->ecccalc; uint8_t *ecc_code = chip->buffers->ecccode; uint32_t *eccpos = chip->ecc.layout->eccpos; uint8_t *oob = chip->oob_poi;
uint32_t data_pos; uint32_t oob_pos;
data_pos = 0; /* oob area start */ oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0]; oob += chip->ecc.layout->eccpos[0];
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
oob += eccbytes) {
chip->ecc.hwctl(mtd, NAND_ECC_READ);
/* read data */
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, -1);
chip->read_buf(mtd, p, eccsize);
/* read respective ecc from oob area */
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
chip->read_buf(mtd, oob, eccbytes);
/* read syndrome */
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
data_pos += eccsize;
oob_pos += eccbytes;
}
/* Enable ECC engine */
chip->ecc.hwctl(mtd, NAND_ECC_READ);
/* read entire page */
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, 0, -1);
chip->read_buf(mtd, buf, mtd->writesize);
/* read all ecc bytes from oob area */
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
chip->read_buf(mtd, oob, ecctotal);
/* Calculate ecc bytes */
omap_calculate_ecc_bch_multi(mtd, buf, ecc_calc); for (i = 0; i < chip->ecc.total; i++) ecc_code[i] = chip->oob_poi[eccpos[i]];
/* error detect & correct */ eccsteps = chip->ecc.steps; p = buf; for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { int stat;
stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); if (stat < 0) mtd->ecc_stats.failed++; else mtd->ecc_stats.corrected += stat; }
return 0;
} #endif /* CONFIG_NAND_OMAP_ELM */ @@ -819,9 +940,9 @@ static int omap_select_ecc_scheme(struct nand_chip *nand, nand->ecc.strength = 8; nand->ecc.size = SECTOR_BYTES; nand->ecc.bytes = 13;
nand->ecc.hwctl = omap_enable_hwecc;
nand->ecc.hwctl = omap_enable_hwecc_bch; nand->ecc.correct = omap_correct_data_bch_sw;
nand->ecc.calculate = omap_calculate_ecc;
nand->ecc.calculate = omap_calculate_ecc_bch; /* define ecc-layout */ ecclayout->eccbytes = nand->ecc.bytes * eccsteps; ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH;
@@ -860,9 +981,9 @@ static int omap_select_ecc_scheme(struct nand_chip *nand, nand->ecc.strength = 8; nand->ecc.size = SECTOR_BYTES; nand->ecc.bytes = 14;
nand->ecc.hwctl = omap_enable_hwecc;
nand->ecc.hwctl = omap_enable_hwecc_bch; nand->ecc.correct = omap_correct_data_bch;
nand->ecc.calculate = omap_calculate_ecc;
nand->ecc.calculate = omap_calculate_ecc_bch; nand->ecc.read_page = omap_read_page_bch; /* define ecc-layout */ ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
@@ -893,9 +1014,9 @@ static int omap_select_ecc_scheme(struct nand_chip *nand, nand->ecc.size = SECTOR_BYTES; nand->ecc.bytes = 26; nand->ecc.strength = 16;
nand->ecc.hwctl = omap_enable_hwecc;
nand->ecc.hwctl = omap_enable_hwecc_bch; nand->ecc.correct = omap_correct_data_bch;
nand->ecc.calculate = omap_calculate_ecc;
nand->ecc.calculate = omap_calculate_ecc_bch; nand->ecc.read_page = omap_read_page_bch; /* define ecc-layout */ ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
-- 2.34.1