
On Wed, Mar 16, 2022 at 7:09 AM Fabio Estevam festevam@gmail.com wrote:
Adding Han Xu's NXP email on Cc.
On Mon, Mar 14, 2022 at 10:31 AM Frieder Schrempf frieder.schrempf@kontron.de wrote:
Hello everyone,
sorry to dig out an old thread, but the below patch which was applied upstream as 616f03dabacb causes a regression for me when trying to attach an UBI volume with U-Boot 2022.01 on a board with i.MX6 Solo and AMD/Spansion parallel NAND.
The failure looks like this:
ubi0: attaching mtd2 ubi0 error: ubi_io_read: error -74 (ECC error) while reading 64 bytes from PEB 0:0, read 64 bytes ubi0 error: ubi_io_read: error -74 (ECC error) while reading 2048 bytes from PEB 0:2048, read 2048 bytes ubi0 error: ubi_io_read: error -74 (ECC error) while reading 64 bytes from PEB 1:0, read 64 bytes ubi0 error: ubi_io_read: error -74 (ECC error) while reading 2048 bytes from PEB 1:2048, read 2048 bytes
The NAND as reported by Linux is:
nand: device found, Manufacturer ID: 0x01, Chip ID: 0xdc nand: AMD/Spansion S34ML04G1 nand: 512 MiB, SLC, erase size: 128 KiB, page size: 2048, OOB size: 64
A different revision of the same board with a different NAND from manufacturer ESMT doesn't show the issue:
nand: device found, Manufacturer ID: 0xc8, Chip ID: 0xdc nand: ESMT NAND 512MiB 3,3V 8-bit nand: 512 MiB, SLC, erase size: 128 KiB, page size: 2048, OOB size: 64
When I revert the mentioned commit (see patch here: [1]), the UBI boot starts working again.
Does anyone know what the problem is and how to properly solve it?
Thanks for any help! Frieder
[1] https://zerobin.net/?57a57a322bbdcf3c#rZa3vHlWi+RxtRomoljtrngqWwiv6v4Js/2LNf...
Frieder,
I see the same issue here with IMX6Q/DL GPMI NAND.
If I re-flash the ubi within U-Boot (tftpboot $loadaddr rootfs.ubi && nand erase.part rootfs && nand write $loadaddr rootfs $filesize) I find that U-Boot can attach and mount the ubi fine but Linux will have issues
Ventana > ubi part rootfs ubi0: attaching mtd3 ubi0: scanning is finished ubi0: attached mtd3 (name "rootfs", size 2031 MiB) ubi0: PEB size: 262144 bytes (256 KiB), LEB size: 253952 bytes ubi0: min./max. I/O unit sizes: 4096/4096, sub-page size 4096 ubi0: VID header offset: 4096 (aligned 4096), data offset: 8192 ubi0: good PEBs: 8123, bad PEBs: 1, corrupted PEBs: 0 ubi0: user volume: 3, internal volumes: 1, max. volumes count: 128 ubi0: max/mean erase counter: 1/0, WL threshold: 4096, image sequence number: 1632759352 ubi0: available PEBs: 0, total reserved PEBs: 8123, PEBs reserved for bad PEB handling: 159 Ventana > ubifsmount ubi0:boot Ventana > ubifsls 38158 Mon Sep 27 17:18:10 2021 gateworks-imx6-imx6q-gw5400-a.dtb 41659 Mon Sep 27 17:18:07 2021 gateworks-imx6-imx6dl-gw53xx.dtb 42964 Mon Sep 27 17:18:10 2021 gateworks-imx6-imx6q-gw53xx.dtb ...
[ 2.065328] ubi0: attaching mtd2 [ 2.092015] ubi0 warning: ubi_io_read: error -74 (ECC error) while reading 253952 bytes from PEB 11:8192, read only 253952 bytes, retry [ 2.096132] mmc0: host does not support reading read-only switch, assuming write-enable [ 2.119427] mmc0: new high speed SDHC card at address 0007 [ 2.126035] mmcblk0: mmc0:0007 SD32G 29.9 GiB [ 2.130221] ubi0 warning: ubi_io_read: error -74 (ECC error) while reading 253952 bytes from PEB 11:8192, read only 253952 bytes, retry [ 2.131746] mmcblk0: p1 [ 2.164579] ubi0 warning: ubi_io_read: error -74 (ECC error) while reading 253952 bytes from PEB 11:8192, read only 253952 bytes, retry [ 2.197969] ubi0 error: ubi_io_read: error -74 (ECC error) while reading 253952 bytes from PEB 11:8192, read 253952 bytes
Best regards,
Tim
Am 04.05.20 um 16:08 schrieb Peng Fan:
From: Ye Li ye.li@nxp.com
The code change updated the NAND driver BCH ECC layout algorithm to support large oob size NAND chips(oob > 1024 bytes) and proposed a new way to set ECC layout.
Current implementation requires each chunk size larger than oob size so the bad block marker (BBM) can be guaranteed located in data chunk. The ECC layout always using the unbalanced layout(Ecc for both meta and Data0 chunk), but for the NAND chips with oob larger than 1k, the driver cannot support because BCH doesn’t support GF 15 for 2K chunk.
The change keeps the data chunk no larger than 1k and adjust the ECC strength or ECC layout to locate the BBM in data chunk. General idea for large oob NAND chips is
1.Try all ECC strength from the minimum value required by NAND spec to the maximum one that works, any ECC makes the BBM locate in data chunk can be chosen.
2.If none of them works, using separate ECC for meta, which will add one extra ecc with the same ECC strength as other data chunks. This extra ECC can guarantee BBM located in data chunk, of course, we need to check if oob can afford it.
Previous code has two methods for ECC layout setting, the legacy_calc_ecc_layout and calc_ecc_layout_by_info, the difference between these two methods is, legacy_calc_ecc_layout set the chunk size larger chan oob size and then set the maximum ECC strength that oob can afford. While the calc_ecc_layout_by_info set chunk size and ECC strength according to NAND spec. It has been proved that the first method cannot provide safe ECC strength for some modern NAND chips, so in current code,
- Driver read NAND parameters first and then chose the proper ECC
layout setting method.
- If the oob is large or NAND required data chunk larger than oob size,
chose calc_ecc_for_large_oob, otherwise use calc_ecc_layout_by_info
- legacy_calc_ecc_layout only used for some NAND chips does not contains
necessary information. So this is only a backup plan, it is NOT recommended to use these NAND chips.
Signed-off-by: Han Xu b45815@freescale.com Signed-off-by: Ye Li ye.li@nxp.com Signed-off-by: Peng Fan peng.fan@nxp.com
drivers/mtd/nand/raw/mxs_nand.c | 205 ++++++++++++++++++++++++++-------------- include/mxs_nand.h | 12 ++- 2 files changed, 144 insertions(+), 73 deletions(-)
diff --git a/drivers/mtd/nand/raw/mxs_nand.c b/drivers/mtd/nand/raw/mxs_nand.c index fe8097c146..8da59e39c0 100644 --- a/drivers/mtd/nand/raw/mxs_nand.c +++ b/drivers/mtd/nand/raw/mxs_nand.c @@ -112,53 +112,32 @@ static uint32_t mxs_nand_aux_status_offset(void) return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3; }
-static inline int mxs_nand_calc_mark_offset(struct bch_geometry *geo,
uint32_t page_data_size)
+static inline bool mxs_nand_bbm_in_data_chunk(struct bch_geometry *geo, struct mtd_info *mtd,
unsigned int *chunk_num)
{
uint32_t chunk_data_size_in_bits = geo->ecc_chunk_size * 8;
uint32_t chunk_ecc_size_in_bits = geo->ecc_strength * geo->gf_len;
uint32_t chunk_total_size_in_bits;
uint32_t block_mark_chunk_number;
uint32_t block_mark_chunk_bit_offset;
uint32_t block_mark_bit_offset;
unsigned int i, j;
chunk_total_size_in_bits =
chunk_data_size_in_bits + chunk_ecc_size_in_bits;
/* Compute the bit offset of the block mark within the physical page. */
block_mark_bit_offset = page_data_size * 8;
/* Subtract the metadata bits. */
block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8;
/*
* Compute the chunk number (starting at zero) in which the block mark
* appears.
*/
block_mark_chunk_number =
block_mark_bit_offset / chunk_total_size_in_bits;
/*
* Compute the bit offset of the block mark within its chunk, and
* validate it.
*/
block_mark_chunk_bit_offset = block_mark_bit_offset -
(block_mark_chunk_number * chunk_total_size_in_bits);
if (geo->ecc_chunk0_size != geo->ecc_chunkn_size) {
dev_err(this->dev, "The size of chunk0 must equal to chunkn\n");
return false;
}
if (block_mark_chunk_bit_offset > chunk_data_size_in_bits)
return -EINVAL;
i = (mtd->writesize * 8 - MXS_NAND_METADATA_SIZE * 8) /
(geo->gf_len * geo->ecc_strength +
geo->ecc_chunkn_size * 8);
/*
* Now that we know the chunk number in which the block mark appears,
* we can subtract all the ECC bits that appear before it.
*/
block_mark_bit_offset -=
block_mark_chunk_number * chunk_ecc_size_in_bits;
j = (mtd->writesize * 8 - MXS_NAND_METADATA_SIZE * 8) -
(geo->gf_len * geo->ecc_strength +
geo->ecc_chunkn_size * 8) * i;
geo->block_mark_byte_offset = block_mark_bit_offset >> 3;
geo->block_mark_bit_offset = block_mark_bit_offset & 0x7;
if (j < geo->ecc_chunkn_size * 8) {
*chunk_num = i + 1;
dev_dbg(this->dev, "Set ecc to %d and bbm in chunk %d\n",
geo->ecc_strength, *chunk_num);
return true;
}
return 0;
return false;
}
static inline int mxs_nand_calc_ecc_layout_by_info(struct bch_geometry *geo, @@ -168,6 +147,7 @@ static inline int mxs_nand_calc_ecc_layout_by_info(struct bch_geometry *geo, { struct nand_chip *chip = mtd_to_nand(mtd); struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
unsigned int block_mark_bit_offset; switch (ecc_step) { case SZ_512:
@@ -180,45 +160,51 @@ static inline int mxs_nand_calc_ecc_layout_by_info(struct bch_geometry *geo, return -EINVAL; }
geo->ecc_chunk_size = ecc_step;
geo->ecc_chunk0_size = ecc_step;
geo->ecc_chunkn_size = ecc_step; geo->ecc_strength = round_up(ecc_strength, 2); /* Keep the C >= O */
if (geo->ecc_chunk_size < mtd->oobsize)
if (geo->ecc_chunkn_size < mtd->oobsize) return -EINVAL; if (geo->ecc_strength > nand_info->max_ecc_strength_supported) return -EINVAL;
geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunkn_size;
/* For bit swap. */
block_mark_bit_offset = mtd->writesize * 8 -
(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
+ MXS_NAND_METADATA_SIZE * 8);
geo->block_mark_byte_offset = block_mark_bit_offset / 8;
geo->block_mark_bit_offset = block_mark_bit_offset % 8; return 0;
}
-static inline int mxs_nand_calc_ecc_layout(struct bch_geometry *geo, +static inline int mxs_nand_legacy_calc_ecc_layout(struct bch_geometry *geo, struct mtd_info *mtd) { struct nand_chip *chip = mtd_to_nand(mtd); struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
unsigned int block_mark_bit_offset; /* The default for the length of Galois Field. */ geo->gf_len = 13; /* The default for chunk size. */
geo->ecc_chunk_size = 512;
geo->ecc_chunk0_size = 512;
geo->ecc_chunkn_size = 512;
if (geo->ecc_chunk_size < mtd->oobsize) {
if (geo->ecc_chunkn_size < mtd->oobsize) { geo->gf_len = 14;
geo->ecc_chunk_size *= 2;
geo->ecc_chunk0_size *= 2;
geo->ecc_chunkn_size *= 2; }
if (mtd->oobsize > geo->ecc_chunk_size) {
printf("Not support the NAND chips whose oob size is larger then %d bytes!\n",
geo->ecc_chunk_size);
return -EINVAL;
}
geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunkn_size; /* * Determine the ECC layout with the formula:
@@ -234,6 +220,84 @@ static inline int mxs_nand_calc_ecc_layout(struct bch_geometry *geo, geo->ecc_strength = min(round_down(geo->ecc_strength, 2), nand_info->max_ecc_strength_supported);
block_mark_bit_offset = mtd->writesize * 8 -
(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
+ MXS_NAND_METADATA_SIZE * 8);
geo->block_mark_byte_offset = block_mark_bit_offset / 8;
geo->block_mark_bit_offset = block_mark_bit_offset % 8;
return 0;
+}
+static inline int mxs_nand_calc_ecc_for_large_oob(struct bch_geometry *geo,
struct mtd_info *mtd)
+{
struct nand_chip *chip = mtd_to_nand(mtd);
struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
unsigned int block_mark_bit_offset;
unsigned int max_ecc;
unsigned int bbm_chunk;
unsigned int i;
/* sanity check for the minimum ecc nand required */
if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0))
return -EINVAL;
geo->ecc_strength = chip->ecc_strength_ds;
/* calculate the maximum ecc platform can support*/
geo->gf_len = 14;
geo->ecc_chunk0_size = 1024;
geo->ecc_chunkn_size = 1024;
geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunkn_size;
max_ecc = ((mtd->oobsize - MXS_NAND_METADATA_SIZE) * 8)
/ (geo->gf_len * geo->ecc_chunk_count);
max_ecc = min(round_down(max_ecc, 2),
nand_info->max_ecc_strength_supported);
/* search a supported ecc strength that makes bbm */
/* located in data chunk */
geo->ecc_strength = chip->ecc_strength_ds;
while (!(geo->ecc_strength > max_ecc)) {
if (mxs_nand_bbm_in_data_chunk(geo, mtd, &bbm_chunk))
break;
geo->ecc_strength += 2;
}
/* if none of them works, keep using the minimum ecc */
/* nand required but changing ecc page layout */
if (geo->ecc_strength > max_ecc) {
geo->ecc_strength = chip->ecc_strength_ds;
/* add extra ecc for meta data */
geo->ecc_chunk0_size = 0;
geo->ecc_chunk_count = (mtd->writesize / geo->ecc_chunkn_size) + 1;
geo->ecc_for_meta = 1;
/* check if oob can afford this extra ecc chunk */
if (mtd->oobsize * 8 < MXS_NAND_METADATA_SIZE * 8 +
geo->gf_len * geo->ecc_strength
* geo->ecc_chunk_count) {
printf("unsupported NAND chip with new layout\n");
return -EINVAL;
}
/* calculate in which chunk bbm located */
bbm_chunk = (mtd->writesize * 8 - MXS_NAND_METADATA_SIZE * 8 -
geo->gf_len * geo->ecc_strength) /
(geo->gf_len * geo->ecc_strength +
geo->ecc_chunkn_size * 8) + 1;
}
/* calculate the number of ecc chunk behind the bbm */
i = (mtd->writesize / geo->ecc_chunkn_size) - bbm_chunk + 1;
block_mark_bit_offset = mtd->writesize * 8 -
(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - i)
+ MXS_NAND_METADATA_SIZE * 8);
geo->block_mark_byte_offset = block_mark_bit_offset / 8;
geo->block_mark_bit_offset = block_mark_bit_offset % 8;
return 0;
}
@@ -983,18 +1047,23 @@ static int mxs_nand_set_geometry(struct mtd_info *mtd, struct bch_geometry *geo) struct nand_chip *nand = mtd_to_nand(mtd); struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
if (chip->ecc.strength > 0 && chip->ecc.size > 0)
return mxs_nand_calc_ecc_layout_by_info(geo, mtd,
chip->ecc.strength, chip->ecc.size);
if (chip->ecc_strength_ds > nand_info->max_ecc_strength_supported) {
printf("unsupported NAND chip, minimum ecc required %d\n"
, chip->ecc_strength_ds);
return -EINVAL;
}
if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0) &&
(mtd->oobsize < 1024)) {
dev_warn(this->dev, "use legacy bch geometry\n");
return mxs_nand_legacy_calc_ecc_layout(geo, mtd);
}
if (nand_info->use_minimum_ecc ||
mxs_nand_calc_ecc_layout(geo, mtd)) {
if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0))
return -EINVAL;
if (mtd->oobsize > 1024 || chip->ecc_step_ds < mtd->oobsize)
return mxs_nand_calc_ecc_for_large_oob(geo, mtd);
return mxs_nand_calc_ecc_layout_by_info(geo, mtd,
return mxs_nand_calc_ecc_layout_by_info(geo, mtd, chip->ecc_strength_ds, chip->ecc_step_ds);
} return 0;
} @@ -1025,8 +1094,6 @@ int mxs_nand_setup_ecc(struct mtd_info *mtd) if (ret) return ret;
mxs_nand_calc_mark_offset(geo, mtd->writesize);
/* Configure BCH and set NFC geometry */ mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
@@ -1034,7 +1101,7 @@ int mxs_nand_setup_ecc(struct mtd_info *mtd) tmp = (geo->ecc_chunk_count - 1) << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET; tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET; tmp |= (geo->ecc_strength >> 1) << BCH_FLASHLAYOUT0_ECC0_OFFSET;
tmp |= geo->ecc_chunk_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
tmp |= geo->ecc_chunk0_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT; tmp |= (geo->gf_len == 14 ? 1 : 0) << BCH_FLASHLAYOUT0_GF13_0_GF14_1_OFFSET; writel(tmp, &bch_regs->hw_bch_flash0layout0);
@@ -1043,7 +1110,7 @@ int mxs_nand_setup_ecc(struct mtd_info *mtd) tmp = (mtd->writesize + mtd->oobsize) << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET; tmp |= (geo->ecc_strength >> 1) << BCH_FLASHLAYOUT1_ECCN_OFFSET;
tmp |= geo->ecc_chunk_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
tmp |= geo->ecc_chunkn_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT; tmp |= (geo->gf_len == 14 ? 1 : 0) << BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET; writel(tmp, &bch_regs->hw_bch_flash0layout1);
@@ -1268,7 +1335,7 @@ int mxs_nand_init_ctrl(struct mxs_nand_info *nand_info)
nand->ecc.layout = &fake_ecc_layout; nand->ecc.mode = NAND_ECC_HW;
nand->ecc.size = nand_info->bch_geometry.ecc_chunk_size;
nand->ecc.size = nand_info->bch_geometry.ecc_chunkn_size; nand->ecc.strength = nand_info->bch_geometry.ecc_strength; /* second phase scan */
diff --git a/include/mxs_nand.h b/include/mxs_nand.h index ada20483d0..497da77a16 100644 --- a/include/mxs_nand.h +++ b/include/mxs_nand.h @@ -16,22 +16,26 @@
- @gf_len: The length of Galois Field. (e.g., 13 or 14)
- @ecc_strength: A number that describes the strength of the ECC
algorithm.
- @ecc_chunk_size: The size, in bytes, of a single ECC chunk. Note
the first chunk in the page includes both data and
metadata, so it's a bit larger than this value.
- @ecc_chunk0_size: The size, in bytes, of a first ECC chunk.
- @ecc_chunkn_size: The size, in bytes, of a single ECC chunk after
the first chunk in the page.
- @ecc_chunk_count: The number of ECC chunks in the page,
- @block_mark_byte_offset: The byte offset in the ECC-based page view at
which the underlying physical block mark appears.
- @block_mark_bit_offset: The bit offset into the ECC-based page view at
which the underlying physical block mark appears.
- @ecc_for_meta: The flag to indicate if there is a dedicate ecc
*/
for meta.
struct bch_geometry { unsigned int gf_len; unsigned int ecc_strength;
unsigned int ecc_chunk_size;
unsigned int ecc_chunk0_size;
unsigned int ecc_chunkn_size; unsigned int ecc_chunk_count; unsigned int block_mark_byte_offset; unsigned int block_mark_bit_offset;
unsigned int ecc_for_meta; /* ECC for meta data */
};
struct mxs_nand_info {