
Hi,
On 08-11-16 17:21, Maxime Ripard wrote:
This program generates raw SPL images that can be flashed on the NAND with the ECC and randomizer properly set up.
Signed-off-by: Maxime Ripard maxime.ripard@free-electrons.com
Looks good to me:
Reviewed-by: Hans de Goede hdegoede@redhat.com
Regards,
Hans
tools/.gitignore | 1 +- tools/Makefile | 1 +- tools/sunxi-spl-image-builder.c | 1113 ++++++++++++++++++++++++++++++++- 3 files changed, 1115 insertions(+), 0 deletions(-) create mode 100644 tools/sunxi-spl-image-builder.c
diff --git a/tools/.gitignore b/tools/.gitignore index cb1e722d4575..16574467544c 100644 --- a/tools/.gitignore +++ b/tools/.gitignore @@ -15,6 +15,7 @@ /mkexynosspl /mxsboot /mksunxiboot +/sunxi-spl-image-builder /ncb /proftool /relocate-rela diff --git a/tools/Makefile b/tools/Makefile index 400588cf0f5c..dfeeb23484ce 100644 --- a/tools/Makefile +++ b/tools/Makefile @@ -171,6 +171,7 @@ hostprogs-$(CONFIG_MX28) += mxsboot HOSTCFLAGS_mxsboot.o := -pedantic
hostprogs-$(CONFIG_ARCH_SUNXI) += mksunxiboot +hostprogs-$(CONFIG_ARCH_SUNXI) += sunxi-spl-image-builder
hostprogs-$(CONFIG_NETCONSOLE) += ncb hostprogs-$(CONFIG_SHA1_CHECK_UB_IMG) += ubsha1 diff --git a/tools/sunxi-spl-image-builder.c b/tools/sunxi-spl-image-builder.c new file mode 100644 index 000000000000..0f915eb2bdf5 --- /dev/null +++ b/tools/sunxi-spl-image-builder.c @@ -0,0 +1,1113 @@ +/*
- Generic binary BCH encoding/decoding library
- This program is free software; you can redistribute it and/or modify it
- under the terms of the GNU General Public License version 2 as published by
- the Free Software Foundation.
- This program is distributed in the hope that it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc., 51
- Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- For the BCH implementation:
- Copyright © 2011 Parrot S.A.
- Author: Ivan Djelic ivan.djelic@parrot.com
- See also:
- For the randomizer and image builder implementation:
- Copyright © 2016 NextThing Co.
- Copyright © 2016 Free Electrons
- Author: Boris Brezillon boris.brezillon@free-electrons.com
- */
+#include <stdint.h> +#include <stdlib.h> +#include <string.h> +#include <stdio.h> +#include <linux/kernel.h> +#include <linux/errno.h> +#include <asm/byteorder.h> +#include <endian.h> +#include <getopt.h> +#include <version.h>
+#if defined(CONFIG_BCH_CONST_PARAMS) +#define GF_M(_p) (CONFIG_BCH_CONST_M) +#define GF_T(_p) (CONFIG_BCH_CONST_T) +#define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1) +#else +#define GF_M(_p) ((_p)->m) +#define GF_T(_p) ((_p)->t) +#define GF_N(_p) ((_p)->n) +#endif
+#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
+#define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32) +#define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
+#ifndef dbg +#define dbg(_fmt, args...) do {} while (0) +#endif
+#define cpu_to_be32 htobe32 +#define kfree free +#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
+#define BCH_PRIMITIVE_POLY 0x5803
+struct image_info {
- int ecc_strength;
- int ecc_step_size;
- int page_size;
- int oob_size;
- int usable_page_size;
- int eraseblock_size;
- int scramble;
- int boot0;
- off_t offset;
- const char *source;
- const char *dest;
+};
+/**
- struct bch_control - BCH control structure
- @m: Galois field order
- @n: maximum codeword size in bits (= 2^m-1)
- @t: error correction capability in bits
- @ecc_bits: ecc exact size in bits, i.e. generator polynomial degree (<=m*t)
- @ecc_bytes: ecc max size (m*t bits) in bytes
- @a_pow_tab: Galois field GF(2^m) exponentiation lookup table
- @a_log_tab: Galois field GF(2^m) log lookup table
- @mod8_tab: remainder generator polynomial lookup tables
- @ecc_buf: ecc parity words buffer
- @ecc_buf2: ecc parity words buffer
- @xi_tab: GF(2^m) base for solving degree 2 polynomial roots
- @syn: syndrome buffer
- @cache: log-based polynomial representation buffer
- @elp: error locator polynomial
- @poly_2t: temporary polynomials of degree 2t
- */
+struct bch_control {
- unsigned int m;
- unsigned int n;
- unsigned int t;
- unsigned int ecc_bits;
- unsigned int ecc_bytes;
+/* private: */
- uint16_t *a_pow_tab;
- uint16_t *a_log_tab;
- uint32_t *mod8_tab;
- uint32_t *ecc_buf;
- uint32_t *ecc_buf2;
- unsigned int *xi_tab;
- unsigned int *syn;
- int *cache;
- struct gf_poly *elp;
- struct gf_poly *poly_2t[4];
+};
+static int fls(int x) +{
- int r = 32;
- if (!x)
return 0;
- if (!(x & 0xffff0000u)) {
x <<= 16;
r -= 16;
- }
- if (!(x & 0xff000000u)) {
x <<= 8;
r -= 8;
- }
- if (!(x & 0xf0000000u)) {
x <<= 4;
r -= 4;
- }
- if (!(x & 0xc0000000u)) {
x <<= 2;
r -= 2;
- }
- if (!(x & 0x80000000u)) {
x <<= 1;
r -= 1;
- }
- return r;
+}
+/*
- represent a polynomial over GF(2^m)
- */
+struct gf_poly {
- unsigned int deg; /* polynomial degree */
- unsigned int c[0]; /* polynomial terms */
+};
+/* given its degree, compute a polynomial size in bytes */ +#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
+/* polynomial of degree 1 */ +struct gf_poly_deg1 {
- struct gf_poly poly;
- unsigned int c[2];
+};
+/*
- same as encode_bch(), but process input data one byte at a time
- */
+static void encode_bch_unaligned(struct bch_control *bch,
const unsigned char *data, unsigned int len,
uint32_t *ecc)
+{
- int i;
- const uint32_t *p;
- const int l = BCH_ECC_WORDS(bch)-1;
- while (len--) {
p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff);
for (i = 0; i < l; i++)
ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
ecc[l] = (ecc[l] << 8)^(*p);
- }
+}
+/*
- convert ecc bytes to aligned, zero-padded 32-bit ecc words
- */
+static void load_ecc8(struct bch_control *bch, uint32_t *dst,
const uint8_t *src)
+{
- uint8_t pad[4] = {0, 0, 0, 0};
- unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
- for (i = 0; i < nwords; i++, src += 4)
dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3];
- memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
- dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3];
+}
+/*
- convert 32-bit ecc words to ecc bytes
- */
+static void store_ecc8(struct bch_control *bch, uint8_t *dst,
const uint32_t *src)
+{
- uint8_t pad[4];
- unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
- for (i = 0; i < nwords; i++) {
*dst++ = (src[i] >> 24);
*dst++ = (src[i] >> 16) & 0xff;
*dst++ = (src[i] >> 8) & 0xff;
*dst++ = (src[i] >> 0) & 0xff;
- }
- pad[0] = (src[nwords] >> 24);
- pad[1] = (src[nwords] >> 16) & 0xff;
- pad[2] = (src[nwords] >> 8) & 0xff;
- pad[3] = (src[nwords] >> 0) & 0xff;
- memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
+}
+/**
- encode_bch - calculate BCH ecc parity of data
- @bch: BCH control structure
- @data: data to encode
- @len: data length in bytes
- @ecc: ecc parity data, must be initialized by caller
- The @ecc parity array is used both as input and output parameter, in order to
- allow incremental computations. It should be of the size indicated by member
- @ecc_bytes of @bch, and should be initialized to 0 before the first call.
- The exact number of computed ecc parity bits is given by member @ecc_bits of
- @bch; it may be less than m*t for large values of t.
- */
+static void encode_bch(struct bch_control *bch, const uint8_t *data,
unsigned int len, uint8_t *ecc)
+{
- const unsigned int l = BCH_ECC_WORDS(bch)-1;
- unsigned int i, mlen;
- unsigned long m;
- uint32_t w, r[l+1];
- const uint32_t * const tab0 = bch->mod8_tab;
- const uint32_t * const tab1 = tab0 + 256*(l+1);
- const uint32_t * const tab2 = tab1 + 256*(l+1);
- const uint32_t * const tab3 = tab2 + 256*(l+1);
- const uint32_t *pdata, *p0, *p1, *p2, *p3;
- if (ecc) {
/* load ecc parity bytes into internal 32-bit buffer */
load_ecc8(bch, bch->ecc_buf, ecc);
- } else {
memset(bch->ecc_buf, 0, sizeof(r));
- }
- /* process first unaligned data bytes */
- m = ((uintptr_t)data) & 3;
- if (m) {
mlen = (len < (4-m)) ? len : 4-m;
encode_bch_unaligned(bch, data, mlen, bch->ecc_buf);
data += mlen;
len -= mlen;
- }
- /* process 32-bit aligned data words */
- pdata = (uint32_t *)data;
- mlen = len/4;
- data += 4*mlen;
- len -= 4*mlen;
- memcpy(r, bch->ecc_buf, sizeof(r));
- /*
* split each 32-bit word into 4 polynomials of weight 8 as follows:
*
* 31 ...24 23 ...16 15 ... 8 7 ... 0
* xxxxxxxx yyyyyyyy zzzzzzzz tttttttt
* tttttttt mod g = r0 (precomputed)
* zzzzzzzz 00000000 mod g = r1 (precomputed)
* yyyyyyyy 00000000 00000000 mod g = r2 (precomputed)
* xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed)
* xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3
*/
- while (mlen--) {
/* input data is read in big-endian format */
w = r[0]^cpu_to_be32(*pdata++);
p0 = tab0 + (l+1)*((w >> 0) & 0xff);
p1 = tab1 + (l+1)*((w >> 8) & 0xff);
p2 = tab2 + (l+1)*((w >> 16) & 0xff);
p3 = tab3 + (l+1)*((w >> 24) & 0xff);
for (i = 0; i < l; i++)
r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
r[l] = p0[l]^p1[l]^p2[l]^p3[l];
- }
- memcpy(bch->ecc_buf, r, sizeof(r));
- /* process last unaligned bytes */
- if (len)
encode_bch_unaligned(bch, data, len, bch->ecc_buf);
- /* store ecc parity bytes into original parity buffer */
- if (ecc)
store_ecc8(bch, ecc, bch->ecc_buf);
+}
+static inline int modulo(struct bch_control *bch, unsigned int v) +{
- const unsigned int n = GF_N(bch);
- while (v >= n) {
v -= n;
v = (v & n) + (v >> GF_M(bch));
- }
- return v;
+}
+/*
- shorter and faster modulo function, only works when v < 2N.
- */
+static inline int mod_s(struct bch_control *bch, unsigned int v) +{
- const unsigned int n = GF_N(bch);
- return (v < n) ? v : v-n;
+}
+static inline int deg(unsigned int poly) +{
- /* polynomial degree is the most-significant bit index */
- return fls(poly)-1;
+}
+/* Galois field basic operations: multiply, divide, inverse, etc. */
+static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
unsigned int b)
+{
- return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
bch->a_log_tab[b])] : 0;
+}
+static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a) +{
- return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
+}
+static inline unsigned int a_pow(struct bch_control *bch, int i) +{
- return bch->a_pow_tab[modulo(bch, i)];
+}
+static inline int a_log(struct bch_control *bch, unsigned int x) +{
- return bch->a_log_tab[x];
+}
+/*
- generate Galois field lookup tables
- */
+static int build_gf_tables(struct bch_control *bch, unsigned int poly) +{
- unsigned int i, x = 1;
- const unsigned int k = 1 << deg(poly);
- /* primitive polynomial must be of degree m */
- if (k != (1u << GF_M(bch)))
return -1;
- for (i = 0; i < GF_N(bch); i++) {
bch->a_pow_tab[i] = x;
bch->a_log_tab[x] = i;
if (i && (x == 1))
/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
return -1;
x <<= 1;
if (x & k)
x ^= poly;
- }
- bch->a_pow_tab[GF_N(bch)] = 1;
- bch->a_log_tab[0] = 0;
- return 0;
+}
+/*
- compute generator polynomial remainder tables for fast encoding
- */
+static void build_mod8_tables(struct bch_control *bch, const uint32_t *g) +{
- int i, j, b, d;
- uint32_t data, hi, lo, *tab;
- const int l = BCH_ECC_WORDS(bch);
- const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
- const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
- memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
- for (i = 0; i < 256; i++) {
/* p(X)=i is a small polynomial of weight <= 8 */
for (b = 0; b < 4; b++) {
/* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
tab = bch->mod8_tab + (b*256+i)*l;
data = i << (8*b);
while (data) {
d = deg(data);
/* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
data ^= g[0] >> (31-d);
for (j = 0; j < ecclen; j++) {
hi = (d < 31) ? g[j] << (d+1) : 0;
lo = (j+1 < plen) ?
g[j+1] >> (31-d) : 0;
tab[j] ^= hi|lo;
}
}
}
- }
+}
+/*
- build a base for factoring degree 2 polynomials
- */
+static int build_deg2_base(struct bch_control *bch) +{
- const int m = GF_M(bch);
- int i, j, r;
- unsigned int sum, x, y, remaining, ak = 0, xi[m];
- /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
- for (i = 0; i < m; i++) {
for (j = 0, sum = 0; j < m; j++)
sum ^= a_pow(bch, i*(1 << j));
if (sum) {
ak = bch->a_pow_tab[i];
break;
}
- }
- /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
- remaining = m;
- memset(xi, 0, sizeof(xi));
- for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
y = gf_sqr(bch, x)^x;
for (i = 0; i < 2; i++) {
r = a_log(bch, y);
if (y && (r < m) && !xi[r]) {
bch->xi_tab[r] = x;
xi[r] = 1;
remaining--;
dbg("x%d = %x\n", r, x);
break;
}
y ^= ak;
}
- }
- /* should not happen but check anyway */
- return remaining ? -1 : 0;
+}
+static void *bch_alloc(size_t size, int *err) +{
- void *ptr;
- ptr = malloc(size);
- if (ptr == NULL)
*err = 1;
- return ptr;
+}
+/*
- compute generator polynomial for given (m,t) parameters.
- */
+static uint32_t *compute_generator_polynomial(struct bch_control *bch) +{
- const unsigned int m = GF_M(bch);
- const unsigned int t = GF_T(bch);
- int n, err = 0;
- unsigned int i, j, nbits, r, word, *roots;
- struct gf_poly *g;
- uint32_t *genpoly;
- g = bch_alloc(GF_POLY_SZ(m*t), &err);
- roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
- genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
- if (err) {
kfree(genpoly);
genpoly = NULL;
goto finish;
- }
- /* enumerate all roots of g(X) */
- memset(roots , 0, (bch->n+1)*sizeof(*roots));
- for (i = 0; i < t; i++) {
for (j = 0, r = 2*i+1; j < m; j++) {
roots[r] = 1;
r = mod_s(bch, 2*r);
}
- }
- /* build generator polynomial g(X) */
- g->deg = 0;
- g->c[0] = 1;
- for (i = 0; i < GF_N(bch); i++) {
if (roots[i]) {
/* multiply g(X) by (X+root) */
r = bch->a_pow_tab[i];
g->c[g->deg+1] = 1;
for (j = g->deg; j > 0; j--)
g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
g->c[0] = gf_mul(bch, g->c[0], r);
g->deg++;
}
- }
- /* store left-justified binary representation of g(X) */
- n = g->deg+1;
- i = 0;
- while (n > 0) {
nbits = (n > 32) ? 32 : n;
for (j = 0, word = 0; j < nbits; j++) {
if (g->c[n-1-j])
word |= 1u << (31-j);
}
genpoly[i++] = word;
n -= nbits;
- }
- bch->ecc_bits = g->deg;
+finish:
- kfree(g);
- kfree(roots);
- return genpoly;
+}
+/**
- free_bch - free the BCH control structure
- @bch: BCH control structure to release
- */
+static void free_bch(struct bch_control *bch) +{
- unsigned int i;
- if (bch) {
kfree(bch->a_pow_tab);
kfree(bch->a_log_tab);
kfree(bch->mod8_tab);
kfree(bch->ecc_buf);
kfree(bch->ecc_buf2);
kfree(bch->xi_tab);
kfree(bch->syn);
kfree(bch->cache);
kfree(bch->elp);
for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
kfree(bch->poly_2t[i]);
kfree(bch);
- }
+}
+/**
- init_bch - initialize a BCH encoder/decoder
- @m: Galois field order, should be in the range 5-15
- @t: maximum error correction capability, in bits
- @prim_poly: user-provided primitive polynomial (or 0 to use default)
- Returns:
- a newly allocated BCH control structure if successful, NULL otherwise
- This initialization can take some time, as lookup tables are built for fast
- encoding/decoding; make sure not to call this function from a time critical
- path. Usually, init_bch() should be called on module/driver init and
- free_bch() should be called to release memory on exit.
- You may provide your own primitive polynomial of degree @m in argument
- @prim_poly, or let init_bch() use its default polynomial.
- Once init_bch() has successfully returned a pointer to a newly allocated
- BCH control structure, ecc length in bytes is given by member @ecc_bytes of
- the structure.
- */
+static struct bch_control *init_bch(int m, int t, unsigned int prim_poly) +{
- int err = 0;
- unsigned int i, words;
- uint32_t *genpoly;
- struct bch_control *bch = NULL;
- const int min_m = 5;
- const int max_m = 15;
- /* default primitive polynomials */
- static const unsigned int prim_poly_tab[] = {
0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
0x402b, 0x8003,
- };
+#if defined(CONFIG_BCH_CONST_PARAMS)
- if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
printk(KERN_ERR "bch encoder/decoder was configured to support "
"parameters m=%d, t=%d only!\n",
CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
goto fail;
- }
+#endif
- if ((m < min_m) || (m > max_m))
/*
* values of m greater than 15 are not currently supported;
* supporting m > 15 would require changing table base type
* (uint16_t) and a small patch in matrix transposition
*/
goto fail;
- /* sanity checks */
- if ((t < 1) || (m*t >= ((1 << m)-1)))
/* invalid t value */
goto fail;
- /* select a primitive polynomial for generating GF(2^m) */
- if (prim_poly == 0)
prim_poly = prim_poly_tab[m-min_m];
- bch = malloc(sizeof(*bch));
- if (bch == NULL)
goto fail;
- memset(bch, 0, sizeof(*bch));
- bch->m = m;
- bch->t = t;
- bch->n = (1 << m)-1;
- words = DIV_ROUND_UP(m*t, 32);
- bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
- bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
- bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
- bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
- bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
- bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
- bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err);
- bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err);
- bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err);
- bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
- for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
- if (err)
goto fail;
- err = build_gf_tables(bch, prim_poly);
- if (err)
goto fail;
- /* use generator polynomial for computing encoding tables */
- genpoly = compute_generator_polynomial(bch);
- if (genpoly == NULL)
goto fail;
- build_mod8_tables(bch, genpoly);
- kfree(genpoly);
- err = build_deg2_base(bch);
- if (err)
goto fail;
- return bch;
+fail:
- free_bch(bch);
- return NULL;
+}
+static void swap_bits(uint8_t *buf, int len) +{
- int i, j;
- for (j = 0; j < len; j++) {
uint8_t byte = buf[j];
buf[j] = 0;
for (i = 0; i < 8; i++) {
if (byte & (1 << i))
buf[j] |= (1 << (7 - i));
}
- }
+}
+static uint16_t lfsr_step(uint16_t state, int count) +{
- state &= 0x7fff;
- while (count--)
state = ((state >> 1) |
((((state >> 0) ^ (state >> 1)) & 1) << 14)) & 0x7fff;
- return state;
+}
+static uint16_t default_scrambler_seeds[] = {
- 0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72,
- 0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436,
- 0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d,
- 0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130,
- 0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56,
- 0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55,
- 0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb,
- 0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17,
- 0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62,
- 0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064,
- 0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126,
- 0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e,
- 0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3,
- 0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b,
- 0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d,
- 0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db,
+};
+static uint16_t brom_scrambler_seeds[] = { 0x4a80 };
+static void scramble(const struct image_info *info,
int page, uint8_t *data, int datalen)
+{
- uint16_t state;
- int i;
- /* Boot0 is always scrambled no matter the command line option. */
- if (info->boot0) {
state = brom_scrambler_seeds[0];
- } else {
unsigned seedmod = info->eraseblock_size / info->page_size;
/* Bail out earlier if the user didn't ask for scrambling. */
if (!info->scramble)
return;
if (seedmod > ARRAY_SIZE(default_scrambler_seeds))
seedmod = ARRAY_SIZE(default_scrambler_seeds);
state = default_scrambler_seeds[page % seedmod];
- }
- /* Prepare the initial state... */
- state = lfsr_step(state, 15);
- /* and start scrambling data. */
- for (i = 0; i < datalen; i++) {
data[i] ^= state;
state = lfsr_step(state, 8);
- }
+}
+static int write_page(const struct image_info *info, uint8_t *buffer,
FILE *src, FILE *rnd, FILE *dst,
struct bch_control *bch, int page)
+{
- int steps = info->usable_page_size / info->ecc_step_size;
- int eccbytes = DIV_ROUND_UP(info->ecc_strength * 14, 8);
- off_t pos = ftell(dst);
- size_t pad, cnt;
- int i;
- if (eccbytes % 2)
eccbytes++;
- memset(buffer, 0xff, info->page_size + info->oob_size);
- cnt = fread(buffer, 1, info->usable_page_size, src);
- if (!cnt) {
if (!feof(src)) {
fprintf(stderr,
"Failed to read data from the source\n");
return -1;
} else {
return 0;
}
- }
- fwrite(buffer, info->page_size + info->oob_size, 1, dst);
- for (i = 0; i < info->usable_page_size; i++) {
if (buffer[i] != 0xff)
break;
- }
- /* We leave empty pages at 0xff. */
- if (i == info->usable_page_size)
return 0;
- /* Restore the source pointer to read it again. */
- fseek(src, -cnt, SEEK_CUR);
- /* Randomize unused space if scrambling is required. */
- if (info->scramble) {
int offs;
if (info->boot0) {
offs = steps * (info->ecc_step_size + eccbytes + 4);
cnt = info->page_size + info->oob_size - offs;
fread(buffer + offs, 1, cnt, rnd);
} else {
offs = info->page_size + (steps * (eccbytes + 4));
cnt = info->page_size + info->oob_size - offs;
memset(buffer + offs, 0xff, cnt);
scramble(info, page, buffer + offs, cnt);
}
fseek(dst, pos + offs, SEEK_SET);
fwrite(buffer + offs, cnt, 1, dst);
- }
- for (i = 0; i < steps; i++) {
int ecc_offs, data_offs;
uint8_t *ecc;
memset(buffer, 0xff, info->ecc_step_size + eccbytes + 4);
ecc = buffer + info->ecc_step_size + 4;
if (info->boot0) {
data_offs = i * (info->ecc_step_size + eccbytes + 4);
ecc_offs = data_offs + info->ecc_step_size + 4;
} else {
data_offs = i * info->ecc_step_size;
ecc_offs = info->page_size + 4 + (i * (eccbytes + 4));
}
cnt = fread(buffer, 1, info->ecc_step_size, src);
if (!cnt && !feof(src)) {
fprintf(stderr,
"Failed to read data from the source\n");
return -1;
}
pad = info->ecc_step_size - cnt;
if (pad) {
if (info->scramble && info->boot0)
fread(buffer + cnt, 1, pad, rnd);
else
memset(buffer + cnt, 0xff, pad);
}
memset(ecc, 0, eccbytes);
swap_bits(buffer, info->ecc_step_size + 4);
encode_bch(bch, buffer, info->ecc_step_size + 4, ecc);
swap_bits(buffer, info->ecc_step_size + 4);
swap_bits(ecc, eccbytes);
scramble(info, page, buffer, info->ecc_step_size + 4 + eccbytes);
fseek(dst, pos + data_offs, SEEK_SET);
fwrite(buffer, info->ecc_step_size, 1, dst);
fseek(dst, pos + ecc_offs - 4, SEEK_SET);
fwrite(ecc - 4, eccbytes + 4, 1, dst);
- }
- /* Fix BBM. */
- fseek(dst, pos + info->page_size, SEEK_SET);
- memset(buffer, 0xff, 2);
- fwrite(buffer, 2, 1, dst);
- /* Make dst pointer point to the next page. */
- fseek(dst, pos + info->page_size + info->oob_size, SEEK_SET);
- return 0;
+}
+static int create_image(const struct image_info *info) +{
- off_t page = info->offset / info->page_size;
- struct bch_control *bch;
- FILE *src, *dst, *rnd;
- uint8_t *buffer;
- bch = init_bch(14, info->ecc_strength, BCH_PRIMITIVE_POLY);
- if (!bch) {
fprintf(stderr, "Failed to init the BCH engine\n");
return -1;
- }
- buffer = malloc(info->page_size + info->oob_size);
- if (!buffer) {
fprintf(stderr, "Failed to allocate the NAND page buffer\n");
return -1;
- }
- memset(buffer, 0xff, info->page_size + info->oob_size);
- src = fopen(info->source, "r");
- if (!src) {
fprintf(stderr, "Failed to open source file (%s)\n",
info->source);
return -1;
- }
- dst = fopen(info->dest, "w");
- if (!dst) {
fprintf(stderr, "Failed to open dest file (%s)\n", info->dest);
return -1;
- }
- rnd = fopen("/dev/urandom", "r");
- if (!rnd) {
fprintf(stderr, "Failed to open /dev/urandom\n");
return -1;
- }
- while (!feof(src)) {
int ret;
ret = write_page(info, buffer, src, rnd, dst, bch, page++);
if (ret)
return ret;
- }
- return 0;
+}
+static void display_help(int status) +{
- fprintf(status == EXIT_SUCCESS ? stdout : stderr,
"sunxi-nand-image-builder %s\n"
"\n"
"Usage: sunxi-nand-image-builder [OPTIONS] source-image output-image\n"
"\n"
"Creates a raw NAND image that can be read by the sunxi NAND controller.\n"
"\n"
"-h --help Display this help and exit\n"
"-c <str>/<step> --ecc=<str>/<step> ECC config (strength/step-size)\n"
"-p <size> --page=<size> Page size\n"
"-o <size> --oob=<size> OOB size\n"
"-u <size> --usable=<size> Usable page size\n"
"-e <size> --eraseblock=<size> Erase block size\n"
"-b --boot0 Build a boot0 image.\n"
"-s --scramble Scramble data\n"
"-a <offset> --address=<offset> Where the image will be programmed.\n"
"\n"
"Notes:\n"
"All the information you need to pass to this tool should be part of\n"
"the NAND datasheet.\n"
"\n"
"The NAND controller only supports the following ECC configs\n"
" Valid ECC strengths: 16, 24, 28, 32, 40, 48, 56, 60 and 64\n"
" Valid ECC step size: 512 and 1024\n"
"\n"
"If you are building a boot0 image, you'll have specify extra options.\n"
"These options should be chosen based on the layouts described here:\n"
" http://linux-sunxi.org/NAND#More_information_on_BROM_NAND\n"
"\n"
" --usable should be assigned the 'Hardware page' value\n"
" --ecc should be assigned the 'ECC capacity'/'ECC page' values\n"
" --usable should be smaller than --page\n"
"\n"
"The --address option is only required for non-boot0 images that are \n"
"meant to be programmed at a non eraseblock aligned offset.\n"
"\n"
"Examples:\n"
" The H27UCG8T2BTR-BC NAND exposes\n"
" * 16k pages\n"
" * 1280 OOB bytes per page\n"
" * 4M eraseblocks\n"
" * requires data scrambling\n"
" * expects a minimum ECC of 40bits/1024bytes\n"
"\n"
" A normal image can be generated with\n"
" sunxi-nand-image-builder -p 16384 -o 1280 -e 0x400000 -s -c 40/1024\n"
" A boot0 image can be generated with\n"
" sunxi-nand-image-builder -p 16384 -o 1280 -e 0x400000 -s -b -u 4096 -c 64/1024\n",
PLAIN_VERSION);
- exit(status);
+}
+static int check_image_info(struct image_info *info) +{
- static int valid_ecc_strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
- int eccbytes, eccsteps;
- unsigned i;
- if (!info->page_size) {
fprintf(stderr, "--page is missing\n");
return -EINVAL;
- }
- if (!info->page_size) {
fprintf(stderr, "--oob is missing\n");
return -EINVAL;
- }
- if (!info->eraseblock_size) {
fprintf(stderr, "--eraseblock is missing\n");
return -EINVAL;
- }
- if (info->ecc_step_size != 512 && info->ecc_step_size != 1024) {
fprintf(stderr, "Invalid ECC step argument: %d\n",
info->ecc_step_size);
return -EINVAL;
- }
- for (i = 0; i < ARRAY_SIZE(valid_ecc_strengths); i++) {
if (valid_ecc_strengths[i] == info->ecc_strength)
break;
- }
- if (i == ARRAY_SIZE(valid_ecc_strengths)) {
fprintf(stderr, "Invalid ECC strength argument: %d\n",
info->ecc_strength);
return -EINVAL;
- }
- eccbytes = DIV_ROUND_UP(info->ecc_strength * 14, 8);
- if (eccbytes % 2)
eccbytes++;
- eccbytes += 4;
- eccsteps = info->usable_page_size / info->ecc_step_size;
- if (info->page_size + info->oob_size <
info->usable_page_size + (eccsteps * eccbytes)) {
fprintf(stderr,
"ECC bytes do not fit in the NAND page, choose a weaker ECC\n");
return -EINVAL;
- }
- return 0;
+}
+int main(int argc, char **argv) +{
- struct image_info info;
- memset(&info, 0, sizeof(info));
- /*
* Process user arguments
*/
- for (;;) {
int option_index = 0;
char *endptr = NULL;
static const struct option long_options[] = {
{"help", no_argument, 0, 'h'},
{"ecc", required_argument, 0, 'c'},
{"page", required_argument, 0, 'p'},
{"oob", required_argument, 0, 'o'},
{"usable", required_argument, 0, 'u'},
{"eraseblock", required_argument, 0, 'e'},
{"boot0", no_argument, 0, 'b'},
{"scramble", no_argument, 0, 's'},
{"address", required_argument, 0, 'a'},
{0, 0, 0, 0},
};
int c = getopt_long(argc, argv, "c:p:o:u:e:ba:sh",
long_options, &option_index);
if (c == EOF)
break;
switch (c) {
case 'h':
display_help(0);
break;
case 's':
info.scramble = 1;
break;
case 'c':
info.ecc_strength = strtol(optarg, &endptr, 0);
if (endptr || *endptr == '/')
info.ecc_step_size = strtol(endptr + 1, NULL, 0);
break;
case 'p':
info.page_size = strtol(optarg, NULL, 0);
break;
case 'o':
info.oob_size = strtol(optarg, NULL, 0);
break;
case 'u':
info.usable_page_size = strtol(optarg, NULL, 0);
break;
case 'e':
info.eraseblock_size = strtol(optarg, NULL, 0);
break;
case 'b':
info.boot0 = 1;
break;
case 'a':
info.offset = strtoull(optarg, NULL, 0);
break;
case '?':
display_help(-1);
break;
}
- }
- if ((argc - optind) != 2)
display_help(-1);
- info.source = argv[optind];
- info.dest = argv[optind + 1];
- if (!info.boot0) {
info.usable_page_size = info.page_size;
- } else if (!info.usable_page_size) {
if (info.page_size > 8192)
info.usable_page_size = 8192;
else if (info.page_size > 4096)
info.usable_page_size = 4096;
else
info.usable_page_size = 1024;
- }
- if (check_image_info(&info))
display_help(-1);
- return create_image(&info);
+}