
Am 04.12.2018 um 13:26 schrieb Vignesh R:
Current U-Boot SPI NOR support (sf layer) is quite outdated as it does not support 4 byte addressing opcodes, SFDP table parsing and different types of quad mode enable sequences. Many newer flashes no longer support BANK registers used by sf layer to a access >16MB space. Also, many SPI controllers have special MMIO interfaces which provide accelerated read/write access but require knowledge of flash parameters to make use of it. Recent spi-mem layer provides a way to support such flashes but sf layer isn't using that. So sync SPI NOR framework from Linux v4.19 and add spi-mem support on top. in order to gain 4 byte addressing support, SFDP support and a way to support SPI controllers with MMIO flash interface.
Signed-off-by: Vignesh R vigneshr@ti.com
drivers/mtd/spi/spi-nor.c | 2613 +++++++++++++++++++++++++++++++++++ include/linux/mtd/cfi.h | 32 + include/linux/mtd/spi-nor.h | 421 ++++++ 3 files changed, 3066 insertions(+) create mode 100644 drivers/mtd/spi/spi-nor.c create mode 100644 include/linux/mtd/cfi.h create mode 100644 include/linux/mtd/spi-nor.h
diff --git a/drivers/mtd/spi/spi-nor.c b/drivers/mtd/spi/spi-nor.c new file mode 100644 index 000000000000..ff79601a8896 --- /dev/null +++ b/drivers/mtd/spi/spi-nor.c @@ -0,0 +1,2613 @@ +// SPDX-License-Identifier: GPL-2.0 +/*
- Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
- influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
- Copyright (C) 2005, Intec Automation Inc.
- Copyright (C) 2014, Freescale Semiconductor, Inc.
- Synced from Linux v4.19
- */
+#include <common.h> +#include <linux/err.h> +#include <linux/errno.h> +#include <linux/log2.h> +#include <linux/math64.h> +#include <linux/sizes.h>
+#include <linux/mtd/mtd.h> +#include <linux/mtd/spi-nor.h> +#include <spi-mem.h> +#include <spi.h>
+/* Define max times to check status register before we give up. */
+/*
- For everything but full-chip erase; probably could be much smaller, but kept
- around for safety for now
- */
+#define HZ CONFIG_SYS_HZ
+#define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
+#define SPI_NOR_MAX_ID_LEN 6 +#define SPI_NOR_MAX_ADDR_WIDTH 4
+struct flash_info {
- char *name;
- /*
* This array stores the ID bytes.
* The first three bytes are the JEDIC ID.
* JEDEC ID zero means "no ID" (mostly older chips).
*/
- u8 id[SPI_NOR_MAX_ID_LEN];
- u8 id_len;
- /* The size listed here is what works with SPINOR_OP_SE, which isn't
* necessarily called a "sector" by the vendor.
*/
- unsigned int sector_size;
- u16 n_sectors;
- u16 page_size;
- u16 addr_width;
- u16 flags;
+#define SECT_4K BIT(0) /* SPINOR_OP_BE_4K works uniformly */ +#define SPI_NOR_NO_ERASE BIT(1) /* No erase command needed */ +#define SST_WRITE BIT(2) /* use SST byte programming */ +#define SPI_NOR_NO_FR BIT(3) /* Can't do fastread */ +#define SECT_4K_PMC BIT(4) /* SPINOR_OP_BE_4K_PMC works uniformly */ +#define SPI_NOR_DUAL_READ BIT(5) /* Flash supports Dual Read */ +#define SPI_NOR_QUAD_READ BIT(6) /* Flash supports Quad Read */ +#define USE_FSR BIT(7) /* use flag status register */ +#define SPI_NOR_HAS_LOCK BIT(8) /* Flash supports lock/unlock via SR */ +#define SPI_NOR_HAS_TB BIT(9) /*
* Flash SR has Top/Bottom (TB) protect
* bit. Must be used with
* SPI_NOR_HAS_LOCK.
*/
+#define SPI_S3AN BIT(10) /*
* Xilinx Spartan 3AN In-System Flash
* (MFR cannot be used for probing
* because it has the same value as
* ATMEL flashes)
*/
+#define SPI_NOR_4B_OPCODES BIT(11) /*
* Use dedicated 4byte address op codes
* to support memory size above 128Mib.
*/
+#define NO_CHIP_ERASE BIT(12) /* Chip does not support chip erase */ +#define SPI_NOR_SKIP_SFDP BIT(13) /* Skip parsing of SFDP tables */ +#define USE_CLSR BIT(14) /* use CLSR command */
- int (*quad_enable)(struct spi_nor *nor);
+};
+#define JEDEC_MFR(info) ((info)->id[0])
+static int spi_nor_read_write_reg(struct spi_nor *nor, struct spi_mem_op
*op, void *buf)
+{
- if (op->data.dir == SPI_MEM_DATA_IN)
op->data.buf.in = buf;
- else
op->data.buf.out = buf;
- return spi_mem_exec_op(nor->spi, op);
+}
+static int spi_nor_read_reg(struct spi_nor *nor, u8 code, u8 *val, int len) +{
- struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(code, 1),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_IN(len, NULL, 1));
- int ret;
- ret = spi_nor_read_write_reg(nor, &op, val);
- if (ret < 0)
dev_dbg(&flash->spimem->spi->dev, "error %d reading %x\n", ret,
code);
- return ret;
+}
+static int spi_nor_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len) +{
- struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 1),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(len, NULL, 1));
- return spi_nor_read_write_reg(nor, &op, buf);
+}
+static ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len,
u_char *buf)
+{
- struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
SPI_MEM_OP_ADDR(nor->addr_width, from, 1),
SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
SPI_MEM_OP_DATA_IN(len, buf, 1));
- size_t remaining = len;
- int ret;
- /* get transfer protocols. */
- op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
- op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
- op.dummy.buswidth = op.addr.buswidth;
- op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
- /* convert the dummy cycles to the number of bytes */
- op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
- while (remaining) {
op.data.nbytes = remaining < UINT_MAX ? remaining : UINT_MAX;
ret = spi_mem_adjust_op_size(nor->spi, &op);
if (ret)
return ret;
ret = spi_mem_exec_op(nor->spi, &op);
if (ret)
return ret;
op.addr.val += op.data.nbytes;
remaining -= op.data.nbytes;
op.data.buf.in += op.data.nbytes;
- }
- return len;
+}
+static ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
const u_char *buf)
+{
- struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
SPI_MEM_OP_ADDR(nor->addr_width, to, 1),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(len, buf, 1));
- size_t remaining = len;
- int ret;
- /* get transfer protocols. */
- op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
- op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
- op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
- if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
op.addr.nbytes = 0;
- while (remaining) {
op.data.nbytes = remaining < UINT_MAX ? remaining : UINT_MAX;
ret = spi_mem_adjust_op_size(nor->spi, &op);
if (ret)
return ret;
ret = spi_mem_exec_op(nor->spi, &op);
if (ret)
return ret;
op.addr.val += op.data.nbytes;
remaining -= op.data.nbytes;
op.data.buf.out += op.data.nbytes;
- }
- return len;
+}
+/*
- Read the status register, returning its value in the location
- Return the status register value.
- Returns negative if error occurred.
- */
+static int read_sr(struct spi_nor *nor) +{
- int ret;
- u8 val;
- ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
- if (ret < 0) {
pr_debug("error %d reading SR\n", (int)ret);
return ret;
- }
- return val;
+}
+/*
- Read the flag status register, returning its value in the location
- Return the status register value.
- Returns negative if error occurred.
- */
+static int read_fsr(struct spi_nor *nor) +{
- int ret;
- u8 val;
- ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
- if (ret < 0) {
pr_debug("error %d reading FSR\n", ret);
return ret;
- }
- return val;
+}
+/*
- Read configuration register, returning its value in the
- location. Return the configuration register value.
- Returns negative if error occurred.
- */
+#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND) +static int read_cr(struct spi_nor *nor) +{
- int ret;
- u8 val;
- ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
- if (ret < 0) {
dev_dbg(nor->dev, "error %d reading CR\n", ret);
return ret;
- }
- return val;
+} +#endif
+/*
- Write status register 1 byte
- Returns negative if error occurred.
- */
+static inline int write_sr(struct spi_nor *nor, u8 val) +{
- nor->cmd_buf[0] = val;
- return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
+}
+/*
- Set write enable latch with Write Enable command.
- Returns negative if error occurred.
- */
+static inline int write_enable(struct spi_nor *nor) +{
- return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
+}
+/*
- Send write disable instruction to the chip.
- */
+static inline int write_disable(struct spi_nor *nor) +{
- return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
+}
+static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd) +{
- return mtd->priv;
+}
+static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size) +{
- size_t i;
- for (i = 0; i < size; i++)
if (table[i][0] == opcode)
return table[i][1];
- /* No conversion found, keep input op code. */
- return opcode;
+}
+static inline u8 spi_nor_convert_3to4_read(u8 opcode) +{
- static const u8 spi_nor_3to4_read[][2] = {
{ SPINOR_OP_READ, SPINOR_OP_READ_4B },
{ SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B },
{ SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
{ SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
{ SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
{ SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
- };
- return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
ARRAY_SIZE(spi_nor_3to4_read));
+}
+static inline u8 spi_nor_convert_3to4_program(u8 opcode) +{
- static const u8 spi_nor_3to4_program[][2] = {
{ SPINOR_OP_PP, SPINOR_OP_PP_4B },
{ SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B },
{ SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B },
- };
- return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
ARRAY_SIZE(spi_nor_3to4_program));
+}
+static inline u8 spi_nor_convert_3to4_erase(u8 opcode) +{
- static const u8 spi_nor_3to4_erase[][2] = {
{ SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B },
{ SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B },
{ SPINOR_OP_SE, SPINOR_OP_SE_4B },
- };
- return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
ARRAY_SIZE(spi_nor_3to4_erase));
+}
+static void spi_nor_set_4byte_opcodes(struct spi_nor *nor,
const struct flash_info *info)
+{
- /* Do some manufacturer fixups first */
- switch (JEDEC_MFR(info)) {
- case SNOR_MFR_SPANSION:
/* No small sector erase for 4-byte command set */
nor->erase_opcode = SPINOR_OP_SE;
nor->mtd.erasesize = info->sector_size;
break;
- default:
break;
- }
- nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
- nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
- nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
+}
+/* Enable/disable 4-byte addressing mode. */ +static inline int set_4byte(struct spi_nor *nor, const struct flash_info *info,
int enable)
+{
- int status;
- bool need_wren = false;
- u8 cmd;
- switch (JEDEC_MFR(info)) {
- case SNOR_MFR_MICRON:
/* Some Micron need WREN command; all will accept it */
need_wren = true;
- case SNOR_MFR_MACRONIX:
- case SNOR_MFR_WINBOND:
if (need_wren)
write_enable(nor);
cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
status = nor->write_reg(nor, cmd, NULL, 0);
if (need_wren)
write_disable(nor);
if (!status && !enable &&
JEDEC_MFR(info) == SNOR_MFR_WINBOND) {
/*
* On Winbond W25Q256FV, leaving 4byte mode causes
* the Extended Address Register to be set to 1, so all
* 3-byte-address reads come from the second 16M.
* We must clear the register to enable normal behavior.
*/
write_enable(nor);
nor->cmd_buf[0] = 0;
nor->write_reg(nor, SPINOR_OP_WREAR, nor->cmd_buf, 1);
write_disable(nor);
}
return status;
- default:
/* Spansion style */
nor->cmd_buf[0] = enable << 7;
return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
- }
+}
+static int spi_nor_sr_ready(struct spi_nor *nor) +{
- int sr = read_sr(nor);
- if (sr < 0)
return sr;
+#ifndef CONFIG_SPL_BUILD
- if (nor->flags & SNOR_F_USE_CLSR && sr & (SR_E_ERR | SR_P_ERR)) {
if (sr & SR_E_ERR)
dev_dbg(nor->dev, "Erase Error occurred\n");
else
dev_dbg(nor->dev, "Programming Error occurred\n");
nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0);
return -EIO;
- }
+#endif
- return !(sr & SR_WIP);
+}
+static int spi_nor_fsr_ready(struct spi_nor *nor) +{
- int fsr = read_fsr(nor);
- if (fsr < 0)
return fsr;
+#ifndef CONFIG_SPL_BUILD
- if (fsr & (FSR_E_ERR | FSR_P_ERR)) {
if (fsr & FSR_E_ERR)
dev_dbg(nor->dev, "Erase operation failed.\n");
else
dev_dbg(nor->dev, "Program operation failed.\n");
if (fsr & FSR_PT_ERR)
dev_dbg(nor->dev,
"Attempted to modify a protected sector.\n");
nor->write_reg(nor, SPINOR_OP_CLFSR, NULL, 0);
return -EIO;
- }
+#endif
- return fsr & FSR_READY;
+}
+static int spi_nor_ready(struct spi_nor *nor) +{
- int sr, fsr;
- sr = spi_nor_sr_ready(nor);
- if (sr < 0)
return sr;
- fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
- if (fsr < 0)
return fsr;
- return sr && fsr;
+}
+/*
- Service routine to read status register until ready, or timeout occurs.
- Returns non-zero if error.
- */
+static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
unsigned long timeout)
+{
- unsigned long timebase;
- int ret;
- timebase = get_timer(0);
- while (get_timer(timebase) < timeout) {
ret = spi_nor_ready(nor);
if (ret < 0)
return ret;
if (ret)
return 0;
- }
- dev_err(nor->dev, "flash operation timed out\n");
- return -ETIMEDOUT;
+}
+static int spi_nor_wait_till_ready(struct spi_nor *nor) +{
- return spi_nor_wait_till_ready_with_timeout(nor,
DEFAULT_READY_WAIT_JIFFIES);
+}
+/*
- Initiate the erasure of a single sector
- */
+static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr) +{
- u8 buf[SPI_NOR_MAX_ADDR_WIDTH];
- int i;
- if (nor->erase)
return nor->erase(nor, addr);
- /*
* Default implementation, if driver doesn't have a specialized HW
* control
*/
- for (i = nor->addr_width - 1; i >= 0; i--) {
buf[i] = addr & 0xff;
addr >>= 8;
- }
- return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width);
+}
+/*
- Erase an address range on the nor chip. The address range may extend
- one or more erase sectors. Return an error is there is a problem erasing.
- */
+static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr) +{
- struct spi_nor *nor = mtd_to_spi_nor(mtd);
- u32 addr, len, rem;
- int ret;
- dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
(long long)instr->len);
- div_u64_rem(instr->len, mtd->erasesize, &rem);
- if (rem)
return -EINVAL;
- addr = instr->addr;
- len = instr->len;
- while (len) {
write_enable(nor);
ret = spi_nor_erase_sector(nor, addr);
if (ret)
goto erase_err;
addr += mtd->erasesize;
len -= mtd->erasesize;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto erase_err;
- }
- write_disable(nor);
+erase_err:
- return ret;
+}
+#if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST) +/* Write status register and ensure bits in mask match written values */ +static int write_sr_and_check(struct spi_nor *nor, u8 status_new, u8 mask) +{
- int ret;
- write_enable(nor);
- ret = write_sr(nor, status_new);
- if (ret)
return ret;
- ret = spi_nor_wait_till_ready(nor);
- if (ret)
return ret;
- ret = read_sr(nor);
- if (ret < 0)
return ret;
- return ((ret & mask) != (status_new & mask)) ? -EIO : 0;
+}
+static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
uint64_t *len)
+{
- struct mtd_info *mtd = &nor->mtd;
- u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
- int shift = ffs(mask) - 1;
- int pow;
- if (!(sr & mask)) {
/* No protection */
*ofs = 0;
*len = 0;
- } else {
pow = ((sr & mask) ^ mask) >> shift;
*len = mtd->size >> pow;
if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
*ofs = 0;
else
*ofs = mtd->size - *len;
- }
+}
+/*
- Return 1 if the entire region is locked (if @locked is true) or unlocked (if
- @locked is false); 0 otherwise
- */
+static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, u64 len,
u8 sr, bool locked)
+{
- loff_t lock_offs;
- uint64_t lock_len;
- if (!len)
return 1;
- stm_get_locked_range(nor, sr, &lock_offs, &lock_len);
- if (locked)
/* Requested range is a sub-range of locked range */
return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
- else
/* Requested range does not overlap with locked range */
return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
+}
+static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
u8 sr)
+{
- return stm_check_lock_status_sr(nor, ofs, len, sr, true);
+}
+static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
u8 sr)
+{
- return stm_check_lock_status_sr(nor, ofs, len, sr, false);
+}
+/*
- Lock a region of the flash. Compatible with ST Micro and similar flash.
- Supports the block protection bits BP{0,1,2} in the status register
- (SR). Does not support these features found in newer SR bitfields:
- SEC: sector/block protect - only handle SEC=0 (block protect)
- CMP: complement protect - only support CMP=0 (range is not complemented)
- Support for the following is provided conditionally for some flash:
- TB: top/bottom protect
- Sample table portion for 8MB flash (Winbond w25q64fw):
- SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion
- X | X | 0 | 0 | 0 | NONE | NONE
- 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64
- 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32
- 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16
- 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8
- 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4
- 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2
- X | X | 1 | 1 | 1 | 8 MB | ALL
- ------|-------|-------|-------|-------|---------------|-------------------
- 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64
- 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32
- 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16
- 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8
- 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4
- 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2
- Returns negative on errors, 0 on success.
- */
+static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len) +{
- struct mtd_info *mtd = &nor->mtd;
- int status_old, status_new;
- u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
- u8 shift = ffs(mask) - 1, pow, val;
- loff_t lock_len;
- bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
- bool use_top;
- status_old = read_sr(nor);
- if (status_old < 0)
return status_old;
- /* If nothing in our range is unlocked, we don't need to do anything */
- if (stm_is_locked_sr(nor, ofs, len, status_old))
return 0;
- /* If anything below us is unlocked, we can't use 'bottom' protection */
- if (!stm_is_locked_sr(nor, 0, ofs, status_old))
can_be_bottom = false;
- /* If anything above us is unlocked, we can't use 'top' protection */
- if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
status_old))
can_be_top = false;
- if (!can_be_bottom && !can_be_top)
return -EINVAL;
- /* Prefer top, if both are valid */
- use_top = can_be_top;
- /* lock_len: length of region that should end up locked */
- if (use_top)
lock_len = mtd->size - ofs;
- else
lock_len = ofs + len;
- /*
* Need smallest pow such that:
*
* 1 / (2^pow) <= (len / size)
*
* so (assuming power-of-2 size) we do:
*
* pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
*/
- pow = ilog2(mtd->size) - ilog2(lock_len);
- val = mask - (pow << shift);
- if (val & ~mask)
return -EINVAL;
- /* Don't "lock" with no region! */
- if (!(val & mask))
return -EINVAL;
- status_new = (status_old & ~mask & ~SR_TB) | val;
- /* Disallow further writes if WP pin is asserted */
- status_new |= SR_SRWD;
- if (!use_top)
status_new |= SR_TB;
- /* Don't bother if they're the same */
- if (status_new == status_old)
return 0;
- /* Only modify protection if it will not unlock other areas */
- if ((status_new & mask) < (status_old & mask))
return -EINVAL;
- return write_sr_and_check(nor, status_new, mask);
+}
+/*
- Unlock a region of the flash. See stm_lock() for more info
- Returns negative on errors, 0 on success.
- */
+static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len) +{
- struct mtd_info *mtd = &nor->mtd;
- int status_old, status_new;
- u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
- u8 shift = ffs(mask) - 1, pow, val;
- loff_t lock_len;
- bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
- bool use_top;
- status_old = read_sr(nor);
- if (status_old < 0)
return status_old;
- /* If nothing in our range is locked, we don't need to do anything */
- if (stm_is_unlocked_sr(nor, ofs, len, status_old))
return 0;
- /* If anything below us is locked, we can't use 'top' protection */
- if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
can_be_top = false;
- /* If anything above us is locked, we can't use 'bottom' protection */
- if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
status_old))
can_be_bottom = false;
- if (!can_be_bottom && !can_be_top)
return -EINVAL;
- /* Prefer top, if both are valid */
- use_top = can_be_top;
- /* lock_len: length of region that should remain locked */
- if (use_top)
lock_len = mtd->size - (ofs + len);
- else
lock_len = ofs;
- /*
* Need largest pow such that:
*
* 1 / (2^pow) >= (len / size)
*
* so (assuming power-of-2 size) we do:
*
* pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
*/
- pow = ilog2(mtd->size) - order_base_2(lock_len);
- if (lock_len == 0) {
val = 0; /* fully unlocked */
- } else {
val = mask - (pow << shift);
/* Some power-of-two sizes are not supported */
if (val & ~mask)
return -EINVAL;
- }
- status_new = (status_old & ~mask & ~SR_TB) | val;
- /* Don't protect status register if we're fully unlocked */
- if (lock_len == 0)
status_new &= ~SR_SRWD;
- if (!use_top)
status_new |= SR_TB;
- /* Don't bother if they're the same */
- if (status_new == status_old)
return 0;
- /* Only modify protection if it will not lock other areas */
- if ((status_new & mask) > (status_old & mask))
return -EINVAL;
- return write_sr_and_check(nor, status_new, mask);
+}
+/*
- Check if a region of the flash is (completely) locked. See stm_lock() for
- more info.
- Returns 1 if entire region is locked, 0 if any portion is unlocked, and
- negative on errors.
- */
+static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len) +{
- int status;
- status = read_sr(nor);
- if (status < 0)
return status;
- return stm_is_locked_sr(nor, ofs, len, status);
+} +#endif /* CONFIG_SPI_FLASH_STMICRO */
+static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{
- struct spi_nor *nor = mtd_to_spi_nor(mtd);
- int ret;
- ret = nor->flash_lock(nor, ofs, len);
- return ret;
+}
+static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{
- struct spi_nor *nor = mtd_to_spi_nor(mtd);
- int ret;
- ret = nor->flash_unlock(nor, ofs, len);
- return ret;
+}
+static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{
- struct spi_nor *nor = mtd_to_spi_nor(mtd);
- int ret;
- ret = nor->flash_is_locked(nor, ofs, len);
- return ret;
+}
+/* Used when the "_ext_id" is two bytes at most */ +#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
.id = { \
((_jedec_id) >> 16) & 0xff, \
((_jedec_id) >> 8) & 0xff, \
(_jedec_id) & 0xff, \
((_ext_id) >> 8) & 0xff, \
(_ext_id) & 0xff, \
}, \
.id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))), \
.sector_size = (_sector_size), \
.n_sectors = (_n_sectors), \
.page_size = 256, \
.flags = (_flags),
+#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
.id = { \
((_jedec_id) >> 16) & 0xff, \
((_jedec_id) >> 8) & 0xff, \
(_jedec_id) & 0xff, \
((_ext_id) >> 16) & 0xff, \
((_ext_id) >> 8) & 0xff, \
(_ext_id) & 0xff, \
}, \
.id_len = 6, \
.sector_size = (_sector_size), \
.n_sectors = (_n_sectors), \
.page_size = 256, \
.flags = (_flags),
+/* NOTE: double check command sets and memory organization when you add
- more nor chips. This current list focusses on newer chips, which
- have been converging on command sets which including JEDEC ID.
- All newly added entries should describe *hardware* and should use SECT_4K
- (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
- scenarios excluding small sectors there is config option that can be
- disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
- For historical (and compatibility) reasons (before we got above config) some
- old entries may be missing 4K flag.
- */
+const struct flash_info spi_nor_ids[] = { +#ifdef CONFIG_SPI_FLASH_ATMEL /* ATMEL */
- /* Atmel -- some are (confusingly) marketed as "DataFlash" */
- { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
- { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
- { "at45db011d", INFO(0x1f2200, 0, 64 * 1024, 4, SECT_4K) },
- { "at45db021d", INFO(0x1f2300, 0, 64 * 1024, 8, SECT_4K) },
- { "at45db041d", INFO(0x1f2400, 0, 64 * 1024, 8, SECT_4K) },
- { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
- { "at45db161d", INFO(0x1f2600, 0, 64 * 1024, 32, SECT_4K) },
- { "at45db321d", INFO(0x1f2700, 0, 64 * 1024, 64, SECT_4K) },
- { "at45db641d", INFO(0x1f2800, 0, 64 * 1024, 128, SECT_4K) },
- { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
+#endif +#ifdef CONFIG_SPI_FLASH_EON /* EON */
- /* EON -- en25xxx */
- { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
- { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
- { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) },
- { "en25s64", INFO(0x1c3817, 0, 64 * 1024, 128, SECT_4K) },
+#endif +#ifdef CONFIG_SPI_FLASH_GIGADEVICE /* GIGADEVICE */
- /* GigaDevice */
- {
"gd25q16", INFO(0xc84015, 0, 64 * 1024, 32,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
- },
- {
"gd25q32", INFO(0xc84016, 0, 64 * 1024, 64,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
- },
- {
"gd25lq32", INFO(0xc86016, 0, 64 * 1024, 64,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
- },
- {
"gd25q64", INFO(0xc84017, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
- },
+#endif +#ifdef CONFIG_SPI_FLASH_ISSI /* ISSI */
- /* ISSI */
- { "is25lq040b", INFO(0x9d4013, 0, 64 * 1024, 8,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
- { "is25lp032", INFO(0x9d6016, 0, 64 * 1024, 64, 0) },
- { "is25lp064", INFO(0x9d6017, 0, 64 * 1024, 128, 0) },
- { "is25lp128", INFO(0x9d6018, 0, 64 * 1024, 256,
SECT_4K | SPI_NOR_DUAL_READ) },
- { "is25lp256", INFO(0x9d6019, 0, 64 * 1024, 512,
SECT_4K | SPI_NOR_DUAL_READ) },
- { "is25wp032", INFO(0x9d7016, 0, 64 * 1024, 64,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
- { "is25wp064", INFO(0x9d7017, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
- { "is25wp128", INFO(0x9d7018, 0, 64 * 1024, 256,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
+#endif +#ifdef CONFIG_SPI_FLASH_MACRONIX /* MACRONIX */
- /* Macronix */
- { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
- { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
- { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
- { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
- { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, SECT_4K) },
- { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) },
- { "mx25u2033e", INFO(0xc22532, 0, 64 * 1024, 4, SECT_4K) },
- { "mx25u1635e", INFO(0xc22535, 0, 64 * 1024, 32, SECT_4K) },
- { "mx25u6435f", INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
- { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
- { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
- { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
- { "mx25u25635f", INFO(0xc22539, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_4B_OPCODES) },
- { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
- { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
- { "mx66u51235f", INFO(0xc2253a, 0, 64 * 1024, 1024, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
- { "mx66l1g45g", INFO(0xc2201b, 0, 64 * 1024, 2048, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
- { "mx25l1633e", INFO(0xc22415, 0, 64 * 1024, 32, SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES | SECT_4K) },
+#endif
+#ifdef CONFIG_SPI_FLASH_STMICRO /* STMICRO */
- /* Micron */
- { "n25q016a", INFO(0x20bb15, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_QUAD_READ) },
- { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) },
- { "n25q032a", INFO(0x20bb16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) },
- { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) },
- { "n25q064a", INFO(0x20bb17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) },
- { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
- { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
- { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
- { "n25q256ax1", INFO(0x20bb19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_QUAD_READ) },
- { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
- { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
- { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
- { "n25q00a", INFO(0x20bb21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
- { "mt25qu02g", INFO(0x20bb22, 0, 64 * 1024, 4096, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
+#endif +#ifdef CONFIG_SPI_FLASH_SPANSION /* SPANSION */
- /* Spansion/Cypress -- single (large) sector size only, at least
* for the chips listed here (without boot sectors).
*/
- { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
- { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
- { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, USE_CLSR) },
- { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
- { "s25fl512s", INFO6(0x010220, 0x4d0081, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
- { "s25fl512s_256k", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
- { "s25fl512s_64k", INFO(0x010220, 0x4d01, 64 * 1024, 1024, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
- { "s25fl512s_512k", INFO(0x010220, 0x4f00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
- { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
- { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
- { "s25fl128s", INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
- { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
- { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
- { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
- { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
- { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
- { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
- { "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
- { "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128, SECT_4K) },
- { "s25fl208k", INFO(0x014014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ) },
- { "s25fl128l", INFO(0x016018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
+#endif +#ifdef CONFIG_SPI_FLASH_SST /* SST */
- /* SST -- large erase sizes are "overlays", "sectors" are 4K */
- { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
- { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
- { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
- { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
- { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
- { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
- { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
- { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
- { "sst25wf020a", INFO(0x621612, 0, 64 * 1024, 4, SECT_4K) },
- { "sst25wf040b", INFO(0x621613, 0, 64 * 1024, 8, SECT_4K) },
- { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
- { "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
- { "sst26vf064b", INFO(0xbf2643, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
- { "sst26wf016", INFO(0xbf2651, 0, 64 * 1024, 32, SECT_4K) },
- { "sst26wf032", INFO(0xbf2622, 0, 64 * 1024, 64, SECT_4K) },
- { "sst26wf064", INFO(0xbf2643, 0, 64 * 1024, 128, SECT_4K) },
+#endif +#ifdef CONFIG_SPI_FLASH_STMICRO /* STMICRO */
- /* ST Microelectronics -- newer production may have feature updates */
- { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
- { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
- { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
- { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
- { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
- { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
- { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
- { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
- { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
- { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
- { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
+#endif +#ifdef CONFIG_SPI_FLASH_WINBOND /* WINBOND */
- /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
- { "w25x05", INFO(0xef3010, 0, 64 * 1024, 1, SECT_4K) },
- { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
- { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
- { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
- { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
- { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
- {
"w25q16dw", INFO(0xef6015, 0, 64 * 1024, 32,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
- },
- { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
- { "w25q20cl", INFO(0xef4012, 0, 64 * 1024, 4, SECT_4K) },
- { "w25q20bw", INFO(0xef5012, 0, 64 * 1024, 4, SECT_4K) },
- { "w25q20ew", INFO(0xef6012, 0, 64 * 1024, 4, SECT_4K) },
- { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
- {
"w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
- },
- {
"w25q32jv", INFO(0xef7016, 0, 64 * 1024, 64,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
- },
- { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
- { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
- {
"w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
- },
- {
"w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
- },
- { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
- { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
- { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
- { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
- { "w25m512jv", INFO(0xef7119, 0, 64 * 1024, 1024,
SECT_4K | SPI_NOR_QUAD_READ | SPI_NOR_DUAL_READ) },
+#endif +#ifdef CONFIG_SPI_FLASH_XMC
- /* XMC (Wuhan Xinxin Semiconductor Manufacturing Corp.) */
- { "XM25QH64A", INFO(0x207017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
- { "XM25QH128A", INFO(0x207018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
+#endif
- { },
+};
+static const struct flash_info *spi_nor_read_id(struct spi_nor *nor) +{
- int tmp;
- u8 id[SPI_NOR_MAX_ID_LEN];
- const struct flash_info *info;
- if (!ARRAY_SIZE(spi_nor_ids))
return ERR_PTR(-ENODEV);
- tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
- if (tmp < 0) {
dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
return ERR_PTR(tmp);
- }
- for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
info = &spi_nor_ids[tmp];
if (info->id_len) {
if (!memcmp(info->id, id, info->id_len))
return &spi_nor_ids[tmp];
}
- }
- dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
id[0], id[1], id[2]);
- return ERR_PTR(-ENODEV);
+}
+static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
+{
- struct spi_nor *nor = mtd_to_spi_nor(mtd);
- int ret;
- dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
- while (len) {
loff_t addr = from;
ret = nor->read(nor, addr, len, buf);
if (ret == 0) {
/* We shouldn't see 0-length reads */
ret = -EIO;
goto read_err;
}
if (ret < 0)
goto read_err;
*retlen += ret;
buf += ret;
from += ret;
len -= ret;
- }
- ret = 0;
+read_err:
- return ret;
+}
+#ifdef CONFIG_SPI_FLASH_SST +static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
+{
- struct spi_nor *nor = mtd_to_spi_nor(mtd);
- size_t actual;
- int ret;
- dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
- write_enable(nor);
- nor->sst_write_second = false;
- actual = to % 2;
- /* Start write from odd address. */
- if (actual) {
nor->program_opcode = SPINOR_OP_BP;
/* write one byte. */
ret = nor->write(nor, to, 1, buf);
if (ret < 0)
goto sst_write_err;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto sst_write_err;
- }
- to += actual;
- /* Write out most of the data here. */
- for (; actual < len - 1; actual += 2) {
nor->program_opcode = SPINOR_OP_AAI_WP;
/* write two bytes. */
ret = nor->write(nor, to, 2, buf + actual);
if (ret < 0)
goto sst_write_err;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto sst_write_err;
to += 2;
nor->sst_write_second = true;
- }
- nor->sst_write_second = false;
- write_disable(nor);
- ret = spi_nor_wait_till_ready(nor);
- if (ret)
goto sst_write_err;
- /* Write out trailing byte if it exists. */
- if (actual != len) {
write_enable(nor);
nor->program_opcode = SPINOR_OP_BP;
ret = nor->write(nor, to, 1, buf + actual);
if (ret < 0)
goto sst_write_err;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto sst_write_err;
write_disable(nor);
actual += 1;
- }
+sst_write_err:
- *retlen += actual;
- return ret;
+} +#endif +/*
- Write an address range to the nor chip. Data must be written in
- FLASH_PAGESIZE chunks. The address range may be any size provided
- it is within the physical boundaries.
- */
+static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
- size_t *retlen, const u_char *buf)
+{
- struct spi_nor *nor = mtd_to_spi_nor(mtd);
- size_t page_offset, page_remain, i;
- ssize_t ret;
- dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
- for (i = 0; i < len; ) {
ssize_t written;
loff_t addr = to + i;
/*
* If page_size is a power of two, the offset can be quickly
* calculated with an AND operation. On the other cases we
* need to do a modulus operation (more expensive).
* Power of two numbers have only one bit set and we can use
* the instruction hweight32 to detect if we need to do a
* modulus (do_div()) or not.
*/
if (hweight32(nor->page_size) == 1) {
page_offset = addr & (nor->page_size - 1);
} else {
u64 aux = addr;
page_offset = do_div(aux, nor->page_size);
}
/* the size of data remaining on the first page */
page_remain = min_t(size_t,
nor->page_size - page_offset, len - i);
write_enable(nor);
ret = nor->write(nor, addr, page_remain, buf + i);
if (ret < 0)
goto write_err;
written = ret;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto write_err;
*retlen += written;
i += written;
if (written != page_remain) {
dev_dbg(nor->dev,
"While writing %zu bytes written %zd bytes\n",
page_remain, written);
ret = -EIO;
goto write_err;
}
- }
+write_err:
- return ret;
+}
+#ifdef CONFIG_SPI_FLASH_MACRONIX +/**
- macronix_quad_enable() - set QE bit in Status Register.
- @nor: pointer to a 'struct spi_nor'
- Set the Quad Enable (QE) bit in the Status Register.
- bit 6 of the Status Register is the QE bit for Macronix like QSPI memories.
- Return: 0 on success, -errno otherwise.
- */
+static int macronix_quad_enable(struct spi_nor *nor) +{
- int ret, val;
- val = read_sr(nor);
- if (val < 0)
return val;
- if (val & SR_QUAD_EN_MX)
return 0;
- write_enable(nor);
- write_sr(nor, val | SR_QUAD_EN_MX);
- ret = spi_nor_wait_till_ready(nor);
- if (ret)
return ret;
- ret = read_sr(nor);
- if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
dev_err(nor->dev, "Macronix Quad bit not set\n");
return -EINVAL;
- }
- return 0;
+} +#endif
+#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND) +/*
- Write status Register and configuration register with 2 bytes
- The first byte will be written to the status register, while the
- second byte will be written to the configuration register.
- Return negative if error occurred.
- */
+static int write_sr_cr(struct spi_nor *nor, u8 *sr_cr) +{
- int ret;
- write_enable(nor);
- ret = nor->write_reg(nor, SPINOR_OP_WRSR, sr_cr, 2);
- if (ret < 0) {
dev_dbg(nor->dev,
"error while writing configuration register\n");
return -EINVAL;
- }
- ret = spi_nor_wait_till_ready(nor);
- if (ret) {
dev_dbg(nor->dev,
"timeout while writing configuration register\n");
return ret;
- }
- return 0;
+}
+/**
- spansion_read_cr_quad_enable() - set QE bit in Configuration Register.
- @nor: pointer to a 'struct spi_nor'
- Set the Quad Enable (QE) bit in the Configuration Register.
- This function should be used with QSPI memories supporting the Read
- Configuration Register (35h) instruction.
- bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
- memories.
- Return: 0 on success, -errno otherwise.
- */
+static int spansion_read_cr_quad_enable(struct spi_nor *nor) +{
- u8 sr_cr[2];
- int ret;
- /* Check current Quad Enable bit value. */
- ret = read_cr(nor);
- if (ret < 0) {
dev_dbg(dev, "error while reading configuration register\n");
return -EINVAL;
- }
- if (ret & CR_QUAD_EN_SPAN)
return 0;
- sr_cr[1] = ret | CR_QUAD_EN_SPAN;
- /* Keep the current value of the Status Register. */
- ret = read_sr(nor);
- if (ret < 0) {
dev_dbg(dev, "error while reading status register\n");
return -EINVAL;
- }
- sr_cr[0] = ret;
- ret = write_sr_cr(nor, sr_cr);
- if (ret)
return ret;
- /* Read back and check it. */
- ret = read_cr(nor);
- if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
dev_dbg(nor->dev, "Spansion Quad bit not set\n");
return -EINVAL;
- }
- return 0;
+}
+#if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT) +/**
- spansion_no_read_cr_quad_enable() - set QE bit in Configuration Register.
- @nor: pointer to a 'struct spi_nor'
- Set the Quad Enable (QE) bit in the Configuration Register.
- This function should be used with QSPI memories not supporting the Read
- Configuration Register (35h) instruction.
- bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
- memories.
- Return: 0 on success, -errno otherwise.
- */
+static int spansion_no_read_cr_quad_enable(struct spi_nor *nor) +{
- u8 sr_cr[2];
- int ret;
- /* Keep the current value of the Status Register. */
- ret = read_sr(nor);
- if (ret < 0) {
dev_dbg(nor->dev, "error while reading status register\n");
return -EINVAL;
- }
- sr_cr[0] = ret;
- sr_cr[1] = CR_QUAD_EN_SPAN;
- return write_sr_cr(nor, sr_cr);
+}
+#endif /* CONFIG_SPI_FLASH_SFDP_SUPPORT */ +#endif /* CONFIG_SPI_FLASH_SPANSION */
+struct spi_nor_read_command {
- u8 num_mode_clocks;
- u8 num_wait_states;
- u8 opcode;
- enum spi_nor_protocol proto;
+};
+struct spi_nor_pp_command {
- u8 opcode;
- enum spi_nor_protocol proto;
+};
+enum spi_nor_read_command_index {
- SNOR_CMD_READ,
- SNOR_CMD_READ_FAST,
- SNOR_CMD_READ_1_1_1_DTR,
- /* Dual SPI */
- SNOR_CMD_READ_1_1_2,
- SNOR_CMD_READ_1_2_2,
- SNOR_CMD_READ_2_2_2,
- SNOR_CMD_READ_1_2_2_DTR,
- /* Quad SPI */
- SNOR_CMD_READ_1_1_4,
- SNOR_CMD_READ_1_4_4,
- SNOR_CMD_READ_4_4_4,
- SNOR_CMD_READ_1_4_4_DTR,
- /* Octo SPI */
- SNOR_CMD_READ_1_1_8,
- SNOR_CMD_READ_1_8_8,
- SNOR_CMD_READ_8_8_8,
- SNOR_CMD_READ_1_8_8_DTR,
- SNOR_CMD_READ_MAX
+};
+enum spi_nor_pp_command_index {
- SNOR_CMD_PP,
- /* Quad SPI */
- SNOR_CMD_PP_1_1_4,
- SNOR_CMD_PP_1_4_4,
- SNOR_CMD_PP_4_4_4,
- /* Octo SPI */
- SNOR_CMD_PP_1_1_8,
- SNOR_CMD_PP_1_8_8,
- SNOR_CMD_PP_8_8_8,
- SNOR_CMD_PP_MAX
+};
+struct spi_nor_flash_parameter {
- u64 size;
- u32 page_size;
- struct spi_nor_hwcaps hwcaps;
- struct spi_nor_read_command reads[SNOR_CMD_READ_MAX];
- struct spi_nor_pp_command page_programs[SNOR_CMD_PP_MAX];
- int (*quad_enable)(struct spi_nor *nor);
+};
+static void +spi_nor_set_read_settings(struct spi_nor_read_command *read,
u8 num_mode_clocks,
u8 num_wait_states,
u8 opcode,
enum spi_nor_protocol proto)
+{
- read->num_mode_clocks = num_mode_clocks;
- read->num_wait_states = num_wait_states;
- read->opcode = opcode;
- read->proto = proto;
+}
+static void +spi_nor_set_pp_settings(struct spi_nor_pp_command *pp,
u8 opcode,
enum spi_nor_protocol proto)
+{
- pp->opcode = opcode;
- pp->proto = proto;
+}
+#ifdef CONFIG_SPI_FLASH_SFDP_SUPPORT
This must use CONFIG_IS_ENABLED for SFDP to work in SPL.
+/*
- Serial Flash Discoverable Parameters (SFDP) parsing.
- */
+/**
- spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
- @nor: pointer to a 'struct spi_nor'
- @addr: offset in the SFDP area to start reading data from
- @len: number of bytes to read
- @buf: buffer where the SFDP data are copied into (dma-safe memory)
- Whatever the actual numbers of bytes for address and dummy cycles are
- for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
- followed by a 3-byte address and 8 dummy clock cycles.
- Return: 0 on success, -errno otherwise.
- */
+static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
size_t len, void *buf)
+{
- u8 addr_width, read_opcode, read_dummy;
- int ret;
- read_opcode = nor->read_opcode;
- addr_width = nor->addr_width;
- read_dummy = nor->read_dummy;
- nor->read_opcode = SPINOR_OP_RDSFDP;
- nor->addr_width = 3;
- nor->read_dummy = 8;
- while (len) {
ret = nor->read(nor, addr, len, (u8 *)buf);
if (!ret || ret > len) {
ret = -EIO;
goto read_err;
}
if (ret < 0)
goto read_err;
buf += ret;
addr += ret;
len -= ret;
- }
- ret = 0;
+read_err:
- nor->read_opcode = read_opcode;
- nor->addr_width = addr_width;
- nor->read_dummy = read_dummy;
- return ret;
+}
+struct sfdp_parameter_header {
- u8 id_lsb;
- u8 minor;
- u8 major;
- u8 length; /* in double words */
- u8 parameter_table_pointer[3]; /* byte address */
- u8 id_msb;
+};
+#define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb) +#define SFDP_PARAM_HEADER_PTP(p) \
- (((p)->parameter_table_pointer[2] << 16) | \
((p)->parameter_table_pointer[1] << 8) | \
((p)->parameter_table_pointer[0] << 0))
+#define SFDP_BFPT_ID 0xff00 /* Basic Flash Parameter Table */ +#define SFDP_SECTOR_MAP_ID 0xff81 /* Sector Map Table */
+#define SFDP_SIGNATURE 0x50444653U +#define SFDP_JESD216_MAJOR 1 +#define SFDP_JESD216_MINOR 0 +#define SFDP_JESD216A_MINOR 5 +#define SFDP_JESD216B_MINOR 6
+struct sfdp_header {
- u32 signature; /* Ox50444653U <=> "SFDP" */
- u8 minor;
- u8 major;
- u8 nph; /* 0-base number of parameter headers */
- u8 unused;
- /* Basic Flash Parameter Table. */
- struct sfdp_parameter_header bfpt_header;
+};
+/* Basic Flash Parameter Table */
+/*
- JESD216 rev B defines a Basic Flash Parameter Table of 16 DWORDs.
- They are indexed from 1 but C arrays are indexed from 0.
- */
+#define BFPT_DWORD(i) ((i) - 1) +#define BFPT_DWORD_MAX 16
+/* The first version of JESB216 defined only 9 DWORDs. */ +#define BFPT_DWORD_MAX_JESD216 9
+/* 1st DWORD. */ +#define BFPT_DWORD1_FAST_READ_1_1_2 BIT(16) +#define BFPT_DWORD1_ADDRESS_BYTES_MASK GENMASK(18, 17) +#define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY (0x0UL << 17) +#define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4 (0x1UL << 17) +#define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY (0x2UL << 17) +#define BFPT_DWORD1_DTR BIT(19) +#define BFPT_DWORD1_FAST_READ_1_2_2 BIT(20) +#define BFPT_DWORD1_FAST_READ_1_4_4 BIT(21) +#define BFPT_DWORD1_FAST_READ_1_1_4 BIT(22)
+/* 5th DWORD. */ +#define BFPT_DWORD5_FAST_READ_2_2_2 BIT(0) +#define BFPT_DWORD5_FAST_READ_4_4_4 BIT(4)
+/* 11th DWORD. */ +#define BFPT_DWORD11_PAGE_SIZE_SHIFT 4 +#define BFPT_DWORD11_PAGE_SIZE_MASK GENMASK(7, 4)
+/* 15th DWORD. */
+/*
- (from JESD216 rev B)
- Quad Enable Requirements (QER):
- 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4
reads based on instruction. DQ3/HOLD# functions are hold during
instruction phase.
- 001b: QE is bit 1 of status register 2. It is set via Write Status with
two data bytes where bit 1 of the second byte is one.
[...]
Writing only one byte to the status register has the side-effect of
clearing status register 2, including the QE bit. The 100b code is
used if writing one byte to the status register does not modify
status register 2.
- 010b: QE is bit 6 of status register 1. It is set via Write Status with
one data byte where bit 6 is one.
[...]
- 011b: QE is bit 7 of status register 2. It is set via Write status
register 2 instruction 3Eh with one data byte where bit 7 is one.
[...]
The status register 2 is read using instruction 3Fh.
- 100b: QE is bit 1 of status register 2. It is set via Write Status with
two data bytes where bit 1 of the second byte is one.
[...]
In contrast to the 001b code, writing one byte to the status
register does not modify status register 2.
- 101b: QE is bit 1 of status register 2. Status register 1 is read using
Read Status instruction 05h. Status register2 is read using
instruction 35h. QE is set via Writ Status instruction 01h with
two data bytes where bit 1 of the second byte is one.
[...]
- */
+#define BFPT_DWORD15_QER_MASK GENMASK(22, 20) +#define BFPT_DWORD15_QER_NONE (0x0UL << 20) /* Micron */ +#define BFPT_DWORD15_QER_SR2_BIT1_BUGGY (0x1UL << 20) +#define BFPT_DWORD15_QER_SR1_BIT6 (0x2UL << 20) /* Macronix */ +#define BFPT_DWORD15_QER_SR2_BIT7 (0x3UL << 20) +#define BFPT_DWORD15_QER_SR2_BIT1_NO_RD (0x4UL << 20) +#define BFPT_DWORD15_QER_SR2_BIT1 (0x5UL << 20) /* Spansion */
+struct sfdp_bfpt {
- u32 dwords[BFPT_DWORD_MAX];
+};
+/* Fast Read settings. */
+static inline void +spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
u16 half,
enum spi_nor_protocol proto)
+{
- read->num_mode_clocks = (half >> 5) & 0x07;
- read->num_wait_states = (half >> 0) & 0x1f;
- read->opcode = (half >> 8) & 0xff;
- read->proto = proto;
+}
+struct sfdp_bfpt_read {
- /* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
- u32 hwcaps;
- /*
* The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
* whether the Fast Read x-y-z command is supported.
*/
- u32 supported_dword;
- u32 supported_bit;
- /*
* The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
* encodes the op code, the number of mode clocks and the number of wait
* states to be used by Fast Read x-y-z command.
*/
- u32 settings_dword;
- u32 settings_shift;
- /* The SPI protocol for this Fast Read x-y-z command. */
- enum spi_nor_protocol proto;
+};
+static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
- /* Fast Read 1-1-2 */
- {
SNOR_HWCAPS_READ_1_1_2,
BFPT_DWORD(1), BIT(16), /* Supported bit */
BFPT_DWORD(4), 0, /* Settings */
SNOR_PROTO_1_1_2,
- },
- /* Fast Read 1-2-2 */
- {
SNOR_HWCAPS_READ_1_2_2,
BFPT_DWORD(1), BIT(20), /* Supported bit */
BFPT_DWORD(4), 16, /* Settings */
SNOR_PROTO_1_2_2,
- },
- /* Fast Read 2-2-2 */
- {
SNOR_HWCAPS_READ_2_2_2,
BFPT_DWORD(5), BIT(0), /* Supported bit */
BFPT_DWORD(6), 16, /* Settings */
SNOR_PROTO_2_2_2,
- },
- /* Fast Read 1-1-4 */
- {
SNOR_HWCAPS_READ_1_1_4,
BFPT_DWORD(1), BIT(22), /* Supported bit */
BFPT_DWORD(3), 16, /* Settings */
SNOR_PROTO_1_1_4,
- },
- /* Fast Read 1-4-4 */
- {
SNOR_HWCAPS_READ_1_4_4,
BFPT_DWORD(1), BIT(21), /* Supported bit */
BFPT_DWORD(3), 0, /* Settings */
SNOR_PROTO_1_4_4,
- },
- /* Fast Read 4-4-4 */
- {
SNOR_HWCAPS_READ_4_4_4,
BFPT_DWORD(5), BIT(4), /* Supported bit */
BFPT_DWORD(7), 16, /* Settings */
SNOR_PROTO_4_4_4,
- },
+};
+struct sfdp_bfpt_erase {
- /*
* The half-word at offset <shift> in DWORD <dwoard> encodes the
* op code and erase sector size to be used by Sector Erase commands.
*/
- u32 dword;
- u32 shift;
+};
+static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
- /* Erase Type 1 in DWORD8 bits[15:0] */
- {BFPT_DWORD(8), 0},
- /* Erase Type 2 in DWORD8 bits[31:16] */
- {BFPT_DWORD(8), 16},
- /* Erase Type 3 in DWORD9 bits[15:0] */
- {BFPT_DWORD(9), 0},
- /* Erase Type 4 in DWORD9 bits[31:16] */
- {BFPT_DWORD(9), 16},
+};
+static int spi_nor_hwcaps_read2cmd(u32 hwcaps);
This function is never defined. Compiling with SFDP support fails.
Regards, Simon
+/**
- spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
- @nor: pointer to a 'struct spi_nor'
- @bfpt_header: pointer to the 'struct sfdp_parameter_header' describing
the Basic Flash Parameter Table length and version
- @params: pointer to the 'struct spi_nor_flash_parameter' to be
filled
- The Basic Flash Parameter Table is the main and only mandatory table as
- defined by the SFDP (JESD216) specification.
- It provides us with the total size (memory density) of the data array and
- the number of address bytes for Fast Read, Page Program and Sector Erase
- commands.
- For Fast READ commands, it also gives the number of mode clock cycles and
- wait states (regrouped in the number of dummy clock cycles) for each
- supported instruction op code.
- For Page Program, the page size is now available since JESD216 rev A, however
- the supported instruction op codes are still not provided.
- For Sector Erase commands, this table stores the supported instruction op
- codes and the associated sector sizes.
- Finally, the Quad Enable Requirements (QER) are also available since JESD216
- rev A. The QER bits encode the manufacturer dependent procedure to be
- executed to set the Quad Enable (QE) bit in some internal register of the
- Quad SPI memory. Indeed the QE bit, when it exists, must be set before
- sending any Quad SPI command to the memory. Actually, setting the QE bit
- tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
- and IO3 hence enabling 4 (Quad) I/O lines.
- Return: 0 on success, -errno otherwise.
- */
+static int spi_nor_parse_bfpt(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
struct spi_nor_flash_parameter *params)
+{
- struct mtd_info *mtd = &nor->mtd;
- struct sfdp_bfpt bfpt;
- size_t len;
- int i, cmd, err;
- u32 addr;
- u16 half;
- /* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
- if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
return -EINVAL;
- /* Read the Basic Flash Parameter Table. */
- len = min_t(size_t, sizeof(bfpt),
bfpt_header->length * sizeof(u32));
- addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
- memset(&bfpt, 0, sizeof(bfpt));
- err = spi_nor_read_sfdp(nor, addr, len, &bfpt);
- if (err < 0)
return err;
- /* Fix endianness of the BFPT DWORDs. */
- for (i = 0; i < BFPT_DWORD_MAX; i++)
bfpt.dwords[i] = le32_to_cpu(bfpt.dwords[i]);
- /* Number of address bytes. */
- switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
- case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
nor->addr_width = 3;
break;
- case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
nor->addr_width = 4;
break;
- default:
break;
- }
- /* Flash Memory Density (in bits). */
- params->size = bfpt.dwords[BFPT_DWORD(2)];
- if (params->size & BIT(31)) {
params->size &= ~BIT(31);
/*
* Prevent overflows on params->size. Anyway, a NOR of 2^64
* bits is unlikely to exist so this error probably means
* the BFPT we are reading is corrupted/wrong.
*/
if (params->size > 63)
return -EINVAL;
params->size = 1ULL << params->size;
- } else {
params->size++;
- }
- params->size >>= 3; /* Convert to bytes. */
- /* Fast Read settings. */
- for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
struct spi_nor_read_command *read;
if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
params->hwcaps.mask &= ~rd->hwcaps;
continue;
}
params->hwcaps.mask |= rd->hwcaps;
cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
read = ¶ms->reads[cmd];
half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
- }
- /* Sector Erase settings. */
- for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
u32 erasesize;
u8 opcode;
half = bfpt.dwords[er->dword] >> er->shift;
erasesize = half & 0xff;
/* erasesize == 0 means this Erase Type is not supported. */
if (!erasesize)
continue;
erasesize = 1U << erasesize;
opcode = (half >> 8) & 0xff;
+#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
if (erasesize == SZ_4K) {
nor->erase_opcode = opcode;
mtd->erasesize = erasesize;
break;
}
+#endif
if (!mtd->erasesize || mtd->erasesize < erasesize) {
nor->erase_opcode = opcode;
mtd->erasesize = erasesize;
}
- }
- /* Stop here if not JESD216 rev A or later. */
- if (bfpt_header->length < BFPT_DWORD_MAX)
return 0;
- /* Page size: this field specifies 'N' so the page size = 2^N bytes. */
- params->page_size = bfpt.dwords[BFPT_DWORD(11)];
- params->page_size &= BFPT_DWORD11_PAGE_SIZE_MASK;
- params->page_size >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
- params->page_size = 1U << params->page_size;
- /* Quad Enable Requirements. */
- switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
- case BFPT_DWORD15_QER_NONE:
params->quad_enable = NULL;
break;
+#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
- case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
- case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
params->quad_enable = spansion_no_read_cr_quad_enable;
break;
+#endif
+#ifdef CONFIG_SPI_FLASH_MACRONIX
- case BFPT_DWORD15_QER_SR1_BIT6:
params->quad_enable = macronix_quad_enable;
break;
+#endif +#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
- case BFPT_DWORD15_QER_SR2_BIT1:
params->quad_enable = spansion_read_cr_quad_enable;
break;
+#endif
- default:
return -EINVAL;
- }
- return 0;
+}
+/**
- spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
- @nor: pointer to a 'struct spi_nor'
- @params: pointer to the 'struct spi_nor_flash_parameter' to be
filled
- The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
- specification. This is a standard which tends to supported by almost all
- (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
- runtime the main parameters needed to perform basic SPI flash operations such
- as Fast Read, Page Program or Sector Erase commands.
- Return: 0 on success, -errno otherwise.
- */
+static int spi_nor_parse_sfdp(struct spi_nor *nor,
struct spi_nor_flash_parameter *params)
+{
- const struct sfdp_parameter_header *param_header, *bfpt_header;
- struct sfdp_parameter_header *param_headers = NULL;
- struct sfdp_header header;
- size_t psize;
- int i, err;
- /* Get the SFDP header. */
- err = spi_nor_read_sfdp(nor, 0, sizeof(header), &header);
- if (err < 0)
return err;
- /* Check the SFDP header version. */
- if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
header.major != SFDP_JESD216_MAJOR)
return -EINVAL;
- /*
* Verify that the first and only mandatory parameter header is a
* Basic Flash Parameter Table header as specified in JESD216.
*/
- bfpt_header = &header.bfpt_header;
- if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
bfpt_header->major != SFDP_JESD216_MAJOR)
return -EINVAL;
- /*
* Allocate memory then read all parameter headers with a single
* Read SFDP command. These parameter headers will actually be parsed
* twice: a first time to get the latest revision of the basic flash
* parameter table, then a second time to handle the supported optional
* tables.
* Hence we read the parameter headers once for all to reduce the
* processing time. Also we use kmalloc() instead of devm_kmalloc()
* because we don't need to keep these parameter headers: the allocated
* memory is always released with kfree() before exiting this function.
*/
- if (header.nph) {
psize = header.nph * sizeof(*param_headers);
param_headers = kmalloc(psize, GFP_KERNEL);
if (!param_headers)
return -ENOMEM;
err = spi_nor_read_sfdp(nor, sizeof(header),
psize, param_headers);
if (err < 0) {
dev_err(dev, "failed to read SFDP parameter headers\n");
goto exit;
}
- }
- /*
* Check other parameter headers to get the latest revision of
* the basic flash parameter table.
*/
- for (i = 0; i < header.nph; i++) {
param_header = ¶m_headers[i];
if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
param_header->major == SFDP_JESD216_MAJOR &&
(param_header->minor > bfpt_header->minor ||
(param_header->minor == bfpt_header->minor &&
param_header->length > bfpt_header->length)))
bfpt_header = param_header;
- }
- err = spi_nor_parse_bfpt(nor, bfpt_header, params);
- if (err)
goto exit;
- /* Parse other parameter headers. */
- for (i = 0; i < header.nph; i++) {
param_header = ¶m_headers[i];
switch (SFDP_PARAM_HEADER_ID(param_header)) {
case SFDP_SECTOR_MAP_ID:
dev_info(dev, "non-uniform erase sector maps are not supported yet.\n");
break;
default:
break;
}
if (err)
goto exit;
- }
+exit:
- kfree(param_headers);
- return err;
+} +#else +static int spi_nor_parse_sfdp(struct spi_nor *nor,
struct spi_nor_flash_parameter *params)
+{
- return -EINVAL;
+} +#endif /* CONFIG_SPI_FLASH_SFDP_SUPPORT */
+static int spi_nor_init_params(struct spi_nor *nor,
const struct flash_info *info,
struct spi_nor_flash_parameter *params)
+{
- /* Set legacy flash parameters as default. */
- memset(params, 0, sizeof(*params));
- /* Set SPI NOR sizes. */
- params->size = info->sector_size * info->n_sectors;
- params->page_size = info->page_size;
- /* (Fast) Read settings. */
- params->hwcaps.mask |= SNOR_HWCAPS_READ;
- spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ],
0, 0, SPINOR_OP_READ,
SNOR_PROTO_1_1_1);
- if (!(info->flags & SPI_NOR_NO_FR)) {
params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_FAST],
0, 8, SPINOR_OP_READ_FAST,
SNOR_PROTO_1_1_1);
- }
- if (info->flags & SPI_NOR_DUAL_READ) {
params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_2],
0, 8, SPINOR_OP_READ_1_1_2,
SNOR_PROTO_1_1_2);
- }
- if (info->flags & SPI_NOR_QUAD_READ) {
params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_4],
0, 8, SPINOR_OP_READ_1_1_4,
SNOR_PROTO_1_1_4);
- }
- /* Page Program settings. */
- params->hwcaps.mask |= SNOR_HWCAPS_PP;
- spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP],
SPINOR_OP_PP, SNOR_PROTO_1_1_1);
- if (info->flags & SPI_NOR_QUAD_READ) {
params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_1_1_4],
SPINOR_OP_PP_1_1_4, SNOR_PROTO_1_1_4);
- }
- /* Select the procedure to set the Quad Enable bit. */
- if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD |
SNOR_HWCAPS_PP_QUAD)) {
switch (JEDEC_MFR(info)) {
+#ifdef CONFIG_SPI_FLASH_MACRONIX
case SNOR_MFR_MACRONIX:
params->quad_enable = macronix_quad_enable;
break;
+#endif
case SNOR_MFR_MICRON:
break;
default:
+#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
/* Kept only for backward compatibility purpose. */
params->quad_enable = spansion_read_cr_quad_enable;
+#endif
break;
}
+#ifndef __UBOOT__
/*
* Some manufacturer like GigaDevice may use different
* bit to set QE on different memories, so the MFR can't
* indicate the quad_enable method for this case, we need
* set it in flash info list.
*/
if (info->quad_enable)
params->quad_enable = info->quad_enable;
+#endif
- }
- /* Override the parameters with data read from SFDP tables. */
- nor->addr_width = 0;
- nor->mtd.erasesize = 0;
- if ((info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
!(info->flags & SPI_NOR_SKIP_SFDP)) {
struct spi_nor_flash_parameter sfdp_params;
memcpy(&sfdp_params, params, sizeof(sfdp_params));
if (spi_nor_parse_sfdp(nor, &sfdp_params)) {
nor->addr_width = 0;
nor->mtd.erasesize = 0;
} else {
memcpy(params, &sfdp_params, sizeof(*params));
}
- }
- return 0;
+}
+static int spi_nor_select_read(struct spi_nor *nor,
const struct spi_nor_flash_parameter *params,
u32 shared_hwcaps)
+{
- int best_match = shared_hwcaps & SNOR_HWCAPS_READ_MASK;
- int cmd;
- const struct spi_nor_read_command *read;
- if (best_match < 0)
return -EINVAL;
- if (best_match & SNOR_HWCAPS_READ_1_4_4)
cmd = SNOR_CMD_READ_1_4_4;
- else if (best_match & SNOR_HWCAPS_READ_1_1_4)
cmd = SNOR_CMD_READ_1_1_4;
- else
cmd = SNOR_CMD_READ;
- read = ¶ms->reads[cmd];
- nor->read_opcode = read->opcode;
- nor->read_proto = read->proto;
- /*
* In the spi-nor framework, we don't need to make the difference
* between mode clock cycles and wait state clock cycles.
* Indeed, the value of the mode clock cycles is used by a QSPI
* flash memory to know whether it should enter or leave its 0-4-4
* (Continuous Read / XIP) mode.
* eXecution In Place is out of the scope of the mtd sub-system.
* Hence we choose to merge both mode and wait state clock cycles
* into the so called dummy clock cycles.
*/
- nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
- return 0;
+}
+static int spi_nor_select_pp(struct spi_nor *nor,
const struct spi_nor_flash_parameter *params,
u32 shared_hwcaps)
+{
- int best_match = shared_hwcaps & SNOR_HWCAPS_PP_MASK;
- int cmd;
- const struct spi_nor_pp_command *pp;
- if (best_match < 0)
return -EINVAL;
- if (best_match & SNOR_HWCAPS_PP_1_1_4)
cmd = SNOR_CMD_PP_1_1_4;
- else
cmd = SNOR_CMD_PP;
- pp = ¶ms->page_programs[cmd];
- nor->program_opcode = pp->opcode;
- nor->write_proto = pp->proto;
- return 0;
+}
+static int spi_nor_select_erase(struct spi_nor *nor,
const struct flash_info *info)
+{
- struct mtd_info *mtd = &nor->mtd;
- /* Do nothing if already configured from SFDP. */
- if (mtd->erasesize)
return 0;
+#ifdef CONFIG_SPI_FLASH_USE_4K_SECTORS
- /* prefer "small sector" erase if possible */
- if (info->flags & SECT_4K) {
nor->erase_opcode = SPINOR_OP_BE_4K;
mtd->erasesize = 4096;
- } else if (info->flags & SECT_4K_PMC) {
nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
mtd->erasesize = 4096;
- } else
+#endif
- {
nor->erase_opcode = SPINOR_OP_SE;
mtd->erasesize = info->sector_size;
- }
- return 0;
+}
+static int spi_nor_setup(struct spi_nor *nor, const struct flash_info *info,
const struct spi_nor_flash_parameter *params,
const struct spi_nor_hwcaps *hwcaps)
+{
- u32 ignored_mask, shared_mask;
- bool enable_quad_io;
- int err;
- /*
* Keep only the hardware capabilities supported by both the SPI
* controller and the SPI flash memory.
*/
- shared_mask = hwcaps->mask & params->hwcaps.mask;
- /* SPI n-n-n protocols are not supported yet. */
- ignored_mask = (SNOR_HWCAPS_READ_2_2_2 |
SNOR_HWCAPS_READ_4_4_4 |
SNOR_HWCAPS_READ_8_8_8 |
SNOR_HWCAPS_PP_4_4_4 |
SNOR_HWCAPS_PP_8_8_8);
- if (shared_mask & ignored_mask) {
dev_dbg(nor->dev,
"SPI n-n-n protocols are not supported yet.\n");
shared_mask &= ~ignored_mask;
- }
- /* Select the (Fast) Read command. */
- err = spi_nor_select_read(nor, params, shared_mask);
- if (err) {
dev_dbg(nor->dev,
"can't select read settings supported by both the SPI controller and memory.\n");
return err;
- }
- /* Select the Page Program command. */
- err = spi_nor_select_pp(nor, params, shared_mask);
- if (err) {
dev_dbg(nor->dev,
"can't select write settings supported by both the SPI controller and memory.\n");
return err;
- }
- /* Select the Sector Erase command. */
- err = spi_nor_select_erase(nor, info);
- if (err) {
dev_dbg(nor->dev,
"can't select erase settings supported by both the SPI controller and memory.\n");
return err;
- }
- /* Enable Quad I/O if needed. */
- enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 ||
spi_nor_get_protocol_width(nor->write_proto) == 4);
- if (enable_quad_io && params->quad_enable)
nor->quad_enable = params->quad_enable;
- else
nor->quad_enable = NULL;
- return 0;
+}
+static int spi_nor_init(struct spi_nor *nor) +{
- int err;
- /*
* Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
* with the software protection bits set
*/
- if (JEDEC_MFR(nor->info) == SNOR_MFR_ATMEL ||
JEDEC_MFR(nor->info) == SNOR_MFR_INTEL ||
JEDEC_MFR(nor->info) == SNOR_MFR_SST ||
nor->info->flags & SPI_NOR_HAS_LOCK) {
write_enable(nor);
write_sr(nor, 0);
spi_nor_wait_till_ready(nor);
- }
- if (nor->quad_enable) {
err = nor->quad_enable(nor);
if (err) {
dev_dbg(nor->dev, "quad mode not supported\n");
return err;
}
- }
- if (nor->addr_width == 4 &&
(JEDEC_MFR(nor->info) != SNOR_MFR_SPANSION) &&
!(nor->info->flags & SPI_NOR_4B_OPCODES)) {
/*
* If the RESET# pin isn't hooked up properly, or the system
* otherwise doesn't perform a reset command in the boot
* sequence, it's impossible to 100% protect against unexpected
* reboots (e.g., crashes). Warn the user (or hopefully, system
* designer) that this is bad.
*/
if (nor->flags & SNOR_F_BROKEN_RESET)
printf("enabling reset hack; may not recover from unexpected reboots\n");
set_4byte(nor, nor->info, 1);
- }
- return 0;
+}
+int spi_nor_scan(struct spi_nor *nor) +{
- struct spi_nor_flash_parameter params;
- const struct flash_info *info = NULL;
- struct mtd_info *mtd = &nor->mtd;
- struct spi_nor_hwcaps hwcaps = {
.mask = SNOR_HWCAPS_READ |
SNOR_HWCAPS_READ_FAST |
SNOR_HWCAPS_PP,
- };
- struct spi_slave *spi = nor->spi;
- int ret;
- /* Reset SPI protocol for all commands. */
- nor->reg_proto = SNOR_PROTO_1_1_1;
- nor->read_proto = SNOR_PROTO_1_1_1;
- nor->write_proto = SNOR_PROTO_1_1_1;
- nor->read = spi_nor_read_data;
- nor->write = spi_nor_write_data;
- nor->read_reg = spi_nor_read_reg;
- nor->write_reg = spi_nor_write_reg;
- if (spi->mode & SPI_RX_QUAD) {
hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
if (spi->mode & SPI_TX_QUAD)
hwcaps.mask |= (SNOR_HWCAPS_READ_1_4_4 |
SNOR_HWCAPS_PP_1_1_4 |
SNOR_HWCAPS_PP_1_4_4);
- } else if (spi->mode & SPI_RX_DUAL) {
hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
if (spi->mode & SPI_TX_DUAL)
hwcaps.mask |= SNOR_HWCAPS_READ_1_2_2;
- }
- info = spi_nor_read_id(nor);
- if (IS_ERR_OR_NULL(info))
return -ENOENT;
- /* Parse the Serial Flash Discoverable Parameters table. */
- ret = spi_nor_init_params(nor, info, ¶ms);
- if (ret)
return ret;
- if (!mtd->name)
mtd->name = info->name;
- mtd->priv = nor;
- mtd->type = MTD_NORFLASH;
- mtd->writesize = 1;
- mtd->flags = MTD_CAP_NORFLASH;
- mtd->size = params.size;
- mtd->_erase = spi_nor_erase;
- mtd->_read = spi_nor_read;
+#if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
- /* NOR protection support for STmicro/Micron chips and similar */
- if (JEDEC_MFR(info) == SNOR_MFR_ST ||
JEDEC_MFR(info) == SNOR_MFR_MICRON ||
JEDEC_MFR(info) == SNOR_MFR_SST ||
info->flags & SPI_NOR_HAS_LOCK) {
nor->flash_lock = stm_lock;
nor->flash_unlock = stm_unlock;
nor->flash_is_locked = stm_is_locked;
- }
+#endif
- if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) {
mtd->_lock = spi_nor_lock;
mtd->_unlock = spi_nor_unlock;
mtd->_is_locked = spi_nor_is_locked;
- }
+#ifdef CONFIG_SPI_FLASH_SST
- /* sst nor chips use AAI word program */
- if (info->flags & SST_WRITE)
mtd->_write = sst_write;
- else
+#endif
mtd->_write = spi_nor_write;
- if (info->flags & USE_FSR)
nor->flags |= SNOR_F_USE_FSR;
- if (info->flags & SPI_NOR_HAS_TB)
nor->flags |= SNOR_F_HAS_SR_TB;
- if (info->flags & NO_CHIP_ERASE)
nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
- if (info->flags & USE_CLSR)
nor->flags |= SNOR_F_USE_CLSR;
- if (info->flags & SPI_NOR_NO_ERASE)
mtd->flags |= MTD_NO_ERASE;
- nor->page_size = params.page_size;
- mtd->writebufsize = nor->page_size;
- /* Some devices cannot do fast-read, no matter what DT tells us */
- if (info->flags & SPI_NOR_NO_FR)
params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
- /*
* Configure the SPI memory:
* - select op codes for (Fast) Read, Page Program and Sector Erase.
* - set the number of dummy cycles (mode cycles + wait states).
* - set the SPI protocols for register and memory accesses.
* - set the Quad Enable bit if needed (required by SPI x-y-4 protos).
*/
- ret = spi_nor_setup(nor, info, ¶ms, &hwcaps);
- if (ret)
return ret;
- if (nor->addr_width) {
/* already configured from SFDP */
- } else if (info->addr_width) {
nor->addr_width = info->addr_width;
- } else if (mtd->size > 0x1000000) {
/* enable 4-byte addressing if the device exceeds 16MiB */
nor->addr_width = 4;
if (JEDEC_MFR(info) == SNOR_MFR_SPANSION ||
info->flags & SPI_NOR_4B_OPCODES)
spi_nor_set_4byte_opcodes(nor, info);
- } else {
nor->addr_width = 3;
- }
- if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
dev_dbg(dev, "address width is too large: %u\n",
nor->addr_width);
return -EINVAL;
- }
- /* Send all the required SPI flash commands to initialize device */
- nor->info = info;
- ret = spi_nor_init(nor);
- if (ret)
return ret;
- nor->name = mtd->name;
- nor->size = mtd->size;
- nor->erase_size = mtd->erasesize;
- nor->sector_size = mtd->erasesize;
+#ifndef CONFIG_SPL_BUILD
- printf("SF: Detected %s with page size ", nor->name);
- print_size(nor->page_size, ", erase size ");
- print_size(nor->erase_size, ", total ");
- print_size(nor->size, "");
- puts("\n");
+#endif
+#ifndef __UBOOT__
- dev_info(dev, "%s (%lld Kbytes)\n", info->name,
(long long)mtd->size >> 10);
- dev_dbg(dev,
"mtd .name = %s, .size = 0x%llx (%lldMiB), "
".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
- if (mtd->numeraseregions)
for (i = 0; i < mtd->numeraseregions; i++)
dev_dbg(dev,
"mtd.eraseregions[%d] = { .offset = 0x%llx, "
".erasesize = 0x%.8x (%uKiB), "
".numblocks = %d }\n",
i, (long long)mtd->eraseregions[i].offset,
mtd->eraseregions[i].erasesize,
mtd->eraseregions[i].erasesize / 1024,
mtd->eraseregions[i].numblocks);
+#endif
- return 0;
+} +EXPORT_SYMBOL_GPL(spi_nor_scan);
+/* U-Boot specific functions, need to extend MTD to support these */ +int spi_flash_cmd_get_sw_write_prot(struct spi_nor *nor) +{
- int sr = read_sr(nor);
- if (sr < 0)
return sr;
- return (sr >> 2) & 7;
+}
+MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Huang Shijie shijie8@gmail.com"); +MODULE_AUTHOR("Mike Lavender"); +MODULE_DESCRIPTION("framework for SPI NOR"); diff --git a/include/linux/mtd/cfi.h b/include/linux/mtd/cfi.h new file mode 100644 index 000000000000..3555518bd3f1 --- /dev/null +++ b/include/linux/mtd/cfi.h @@ -0,0 +1,32 @@ +// SPDX-License-Identifier: GPL-2.0 +/*
- Copyright © 2000-2010 David Woodhouse dwmw2@infradead.org et al.
- */
+#ifndef __MTD_CFI_H__ +#define __MTD_CFI_H__
+#define CFI_MFR_ANY 0xFFFF +#define CFI_ID_ANY 0xFFFF +#define CFI_MFR_CONTINUATION 0x007F
+#define CFI_MFR_AMD 0x0001 +#define CFI_MFR_AMIC 0x0037 +#define CFI_MFR_ATMEL 0x001F +#define CFI_MFR_EON 0x001C +#define CFI_MFR_FUJITSU 0x0004 +#define CFI_MFR_HYUNDAI 0x00AD +#define CFI_MFR_INTEL 0x0089 +#define CFI_MFR_MACRONIX 0x00C2 +#define CFI_MFR_NEC 0x0010 +#define CFI_MFR_PMC 0x009D +#define CFI_MFR_SAMSUNG 0x00EC +#define CFI_MFR_SHARP 0x00B0 +#define CFI_MFR_SST 0x00BF +#define CFI_MFR_ST 0x0020 /* STMicroelectronics */ +#define CFI_MFR_MICRON 0x002C /* Micron */ +#define CFI_MFR_TOSHIBA 0x0098 +#define CFI_MFR_WINBOND 0x00DA
+#endif /* __MTD_CFI_H__ */ diff --git a/include/linux/mtd/spi-nor.h b/include/linux/mtd/spi-nor.h new file mode 100644 index 000000000000..2cc86b16030c --- /dev/null +++ b/include/linux/mtd/spi-nor.h @@ -0,0 +1,421 @@ +// SPDX-License-Identifier: GPL-2.0 +/*
- Copyright (C) 2014 Freescale Semiconductor, Inc.
- Synced from Linux v4.19
- */
+#ifndef __LINUX_MTD_SPI_NOR_H +#define __LINUX_MTD_SPI_NOR_H
+#include <linux/bitops.h> +#include <linux/mtd/cfi.h> +#include <linux/mtd/mtd.h>
+/*
- Manufacturer IDs
- The first byte returned from the flash after sending opcode SPINOR_OP_RDID.
- Sometimes these are the same as CFI IDs, but sometimes they aren't.
- */
+#define SNOR_MFR_ATMEL CFI_MFR_ATMEL +#define SNOR_MFR_GIGADEVICE 0xc8 +#define SNOR_MFR_INTEL CFI_MFR_INTEL +#define SNOR_MFR_ST CFI_MFR_ST /* ST Micro <--> Micron */ +#define SNOR_MFR_MICRON CFI_MFR_MICRON /* ST Micro <--> Micron */ +#define SNOR_MFR_MACRONIX CFI_MFR_MACRONIX +#define SNOR_MFR_SPANSION CFI_MFR_AMD +#define SNOR_MFR_SST CFI_MFR_SST +#define SNOR_MFR_WINBOND 0xef /* Also used by some Spansion */
+/*
- Note on opcode nomenclature: some opcodes have a format like
- SPINOR_OP_FUNCTION{4,}_x_y_z. The numbers x, y, and z stand for the number
- of I/O lines used for the opcode, address, and data (respectively). The
- FUNCTION has an optional suffix of '4', to represent an opcode which
- requires a 4-byte (32-bit) address.
- */
+/* Flash opcodes. */ +#define SPINOR_OP_WREN 0x06 /* Write enable */ +#define SPINOR_OP_RDSR 0x05 /* Read status register */ +#define SPINOR_OP_WRSR 0x01 /* Write status register 1 byte */ +#define SPINOR_OP_RDSR2 0x3f /* Read status register 2 */ +#define SPINOR_OP_WRSR2 0x3e /* Write status register 2 */ +#define SPINOR_OP_READ 0x03 /* Read data bytes (low frequency) */ +#define SPINOR_OP_READ_FAST 0x0b /* Read data bytes (high frequency) */ +#define SPINOR_OP_READ_1_1_2 0x3b /* Read data bytes (Dual Output SPI) */ +#define SPINOR_OP_READ_1_2_2 0xbb /* Read data bytes (Dual I/O SPI) */ +#define SPINOR_OP_READ_1_1_4 0x6b /* Read data bytes (Quad Output SPI) */ +#define SPINOR_OP_READ_1_4_4 0xeb /* Read data bytes (Quad I/O SPI) */ +#define SPINOR_OP_PP 0x02 /* Page program (up to 256 bytes) */ +#define SPINOR_OP_PP_1_1_4 0x32 /* Quad page program */ +#define SPINOR_OP_PP_1_4_4 0x38 /* Quad page program */ +#define SPINOR_OP_BE_4K 0x20 /* Erase 4KiB block */ +#define SPINOR_OP_BE_4K_PMC 0xd7 /* Erase 4KiB block on PMC chips */ +#define SPINOR_OP_BE_32K 0x52 /* Erase 32KiB block */ +#define SPINOR_OP_CHIP_ERASE 0xc7 /* Erase whole flash chip */ +#define SPINOR_OP_SE 0xd8 /* Sector erase (usually 64KiB) */ +#define SPINOR_OP_RDID 0x9f /* Read JEDEC ID */ +#define SPINOR_OP_RDSFDP 0x5a /* Read SFDP */ +#define SPINOR_OP_RDCR 0x35 /* Read configuration register */ +#define SPINOR_OP_RDFSR 0x70 /* Read flag status register */ +#define SPINOR_OP_CLFSR 0x50 /* Clear flag status register */ +#define SPINOR_OP_RDEAR 0xc8 /* Read Extended Address Register */ +#define SPINOR_OP_WREAR 0xc5 /* Write Extended Address Register */
+/* 4-byte address opcodes - used on Spansion and some Macronix flashes. */ +#define SPINOR_OP_READ_4B 0x13 /* Read data bytes (low frequency) */ +#define SPINOR_OP_READ_FAST_4B 0x0c /* Read data bytes (high frequency) */ +#define SPINOR_OP_READ_1_1_2_4B 0x3c /* Read data bytes (Dual Output SPI) */ +#define SPINOR_OP_READ_1_2_2_4B 0xbc /* Read data bytes (Dual I/O SPI) */ +#define SPINOR_OP_READ_1_1_4_4B 0x6c /* Read data bytes (Quad Output SPI) */ +#define SPINOR_OP_READ_1_4_4_4B 0xec /* Read data bytes (Quad I/O SPI) */ +#define SPINOR_OP_PP_4B 0x12 /* Page program (up to 256 bytes) */ +#define SPINOR_OP_PP_1_1_4_4B 0x34 /* Quad page program */ +#define SPINOR_OP_PP_1_4_4_4B 0x3e /* Quad page program */ +#define SPINOR_OP_BE_4K_4B 0x21 /* Erase 4KiB block */ +#define SPINOR_OP_BE_32K_4B 0x5c /* Erase 32KiB block */ +#define SPINOR_OP_SE_4B 0xdc /* Sector erase (usually 64KiB) */
+/* Double Transfer Rate opcodes - defined in JEDEC JESD216B. */ +#define SPINOR_OP_READ_1_1_1_DTR 0x0d +#define SPINOR_OP_READ_1_2_2_DTR 0xbd +#define SPINOR_OP_READ_1_4_4_DTR 0xed
+#define SPINOR_OP_READ_1_1_1_DTR_4B 0x0e +#define SPINOR_OP_READ_1_2_2_DTR_4B 0xbe +#define SPINOR_OP_READ_1_4_4_DTR_4B 0xee
+/* Used for SST flashes only. */ +#define SPINOR_OP_BP 0x02 /* Byte program */ +#define SPINOR_OP_WRDI 0x04 /* Write disable */ +#define SPINOR_OP_AAI_WP 0xad /* Auto address increment word program */
+/* Used for S3AN flashes only */ +#define SPINOR_OP_XSE 0x50 /* Sector erase */ +#define SPINOR_OP_XPP 0x82 /* Page program */ +#define SPINOR_OP_XRDSR 0xd7 /* Read status register */
+#define XSR_PAGESIZE BIT(0) /* Page size in Po2 or Linear */ +#define XSR_RDY BIT(7) /* Ready */
+/* Used for Macronix and Winbond flashes. */ +#define SPINOR_OP_EN4B 0xb7 /* Enter 4-byte mode */ +#define SPINOR_OP_EX4B 0xe9 /* Exit 4-byte mode */
+/* Used for Spansion flashes only. */ +#define SPINOR_OP_BRWR 0x17 /* Bank register write */ +#define SPINOR_OP_CLSR 0x30 /* Clear status register 1 */
+/* Used for Micron flashes only. */ +#define SPINOR_OP_RD_EVCR 0x65 /* Read EVCR register */ +#define SPINOR_OP_WD_EVCR 0x61 /* Write EVCR register */
+/* Status Register bits. */ +#define SR_WIP BIT(0) /* Write in progress */ +#define SR_WEL BIT(1) /* Write enable latch */ +/* meaning of other SR_* bits may differ between vendors */ +#define SR_BP0 BIT(2) /* Block protect 0 */ +#define SR_BP1 BIT(3) /* Block protect 1 */ +#define SR_BP2 BIT(4) /* Block protect 2 */ +#define SR_TB BIT(5) /* Top/Bottom protect */ +#define SR_SRWD BIT(7) /* SR write protect */ +/* Spansion/Cypress specific status bits */ +#define SR_E_ERR BIT(5) +#define SR_P_ERR BIT(6)
+#define SR_QUAD_EN_MX BIT(6) /* Macronix Quad I/O */
+/* Enhanced Volatile Configuration Register bits */ +#define EVCR_QUAD_EN_MICRON BIT(7) /* Micron Quad I/O */
+/* Flag Status Register bits */ +#define FSR_READY BIT(7) /* Device status, 0 = Busy, 1 = Ready */ +#define FSR_E_ERR BIT(5) /* Erase operation status */ +#define FSR_P_ERR BIT(4) /* Program operation status */ +#define FSR_PT_ERR BIT(1) /* Protection error bit */
+/* Configuration Register bits. */ +#define CR_QUAD_EN_SPAN BIT(1) /* Spansion Quad I/O */
+/* Status Register 2 bits. */ +#define SR2_QUAD_EN_BIT7 BIT(7)
+/* Supported SPI protocols */ +#define SNOR_PROTO_INST_MASK GENMASK(23, 16) +#define SNOR_PROTO_INST_SHIFT 16 +#define SNOR_PROTO_INST(_nbits) \
- ((((unsigned long)(_nbits)) << SNOR_PROTO_INST_SHIFT) & \
SNOR_PROTO_INST_MASK)
+#define SNOR_PROTO_ADDR_MASK GENMASK(15, 8) +#define SNOR_PROTO_ADDR_SHIFT 8 +#define SNOR_PROTO_ADDR(_nbits) \
- ((((unsigned long)(_nbits)) << SNOR_PROTO_ADDR_SHIFT) & \
SNOR_PROTO_ADDR_MASK)
+#define SNOR_PROTO_DATA_MASK GENMASK(7, 0) +#define SNOR_PROTO_DATA_SHIFT 0 +#define SNOR_PROTO_DATA(_nbits) \
- ((((unsigned long)(_nbits)) << SNOR_PROTO_DATA_SHIFT) & \
SNOR_PROTO_DATA_MASK)
+#define SNOR_PROTO_IS_DTR BIT(24) /* Double Transfer Rate */
+#define SNOR_PROTO_STR(_inst_nbits, _addr_nbits, _data_nbits) \
- (SNOR_PROTO_INST(_inst_nbits) | \
SNOR_PROTO_ADDR(_addr_nbits) | \
SNOR_PROTO_DATA(_data_nbits))
+#define SNOR_PROTO_DTR(_inst_nbits, _addr_nbits, _data_nbits) \
- (SNOR_PROTO_IS_DTR | \
SNOR_PROTO_STR(_inst_nbits, _addr_nbits, _data_nbits))
+enum spi_nor_protocol {
- SNOR_PROTO_1_1_1 = SNOR_PROTO_STR(1, 1, 1),
- SNOR_PROTO_1_1_2 = SNOR_PROTO_STR(1, 1, 2),
- SNOR_PROTO_1_1_4 = SNOR_PROTO_STR(1, 1, 4),
- SNOR_PROTO_1_1_8 = SNOR_PROTO_STR(1, 1, 8),
- SNOR_PROTO_1_2_2 = SNOR_PROTO_STR(1, 2, 2),
- SNOR_PROTO_1_4_4 = SNOR_PROTO_STR(1, 4, 4),
- SNOR_PROTO_1_8_8 = SNOR_PROTO_STR(1, 8, 8),
- SNOR_PROTO_2_2_2 = SNOR_PROTO_STR(2, 2, 2),
- SNOR_PROTO_4_4_4 = SNOR_PROTO_STR(4, 4, 4),
- SNOR_PROTO_8_8_8 = SNOR_PROTO_STR(8, 8, 8),
- SNOR_PROTO_1_1_1_DTR = SNOR_PROTO_DTR(1, 1, 1),
- SNOR_PROTO_1_2_2_DTR = SNOR_PROTO_DTR(1, 2, 2),
- SNOR_PROTO_1_4_4_DTR = SNOR_PROTO_DTR(1, 4, 4),
- SNOR_PROTO_1_8_8_DTR = SNOR_PROTO_DTR(1, 8, 8),
+};
+static inline bool spi_nor_protocol_is_dtr(enum spi_nor_protocol proto) +{
- return !!(proto & SNOR_PROTO_IS_DTR);
+}
+static inline u8 spi_nor_get_protocol_inst_nbits(enum spi_nor_protocol proto) +{
- return ((unsigned long)(proto & SNOR_PROTO_INST_MASK)) >>
SNOR_PROTO_INST_SHIFT;
+}
+static inline u8 spi_nor_get_protocol_addr_nbits(enum spi_nor_protocol proto) +{
- return ((unsigned long)(proto & SNOR_PROTO_ADDR_MASK)) >>
SNOR_PROTO_ADDR_SHIFT;
+}
+static inline u8 spi_nor_get_protocol_data_nbits(enum spi_nor_protocol proto) +{
- return ((unsigned long)(proto & SNOR_PROTO_DATA_MASK)) >>
SNOR_PROTO_DATA_SHIFT;
+}
+static inline u8 spi_nor_get_protocol_width(enum spi_nor_protocol proto) +{
- return spi_nor_get_protocol_data_nbits(proto);
+}
+#define SPI_NOR_MAX_CMD_SIZE 8 +enum spi_nor_ops {
- SPI_NOR_OPS_READ = 0,
- SPI_NOR_OPS_WRITE,
- SPI_NOR_OPS_ERASE,
- SPI_NOR_OPS_LOCK,
- SPI_NOR_OPS_UNLOCK,
+};
+enum spi_nor_option_flags {
- SNOR_F_USE_FSR = BIT(0),
- SNOR_F_HAS_SR_TB = BIT(1),
- SNOR_F_NO_OP_CHIP_ERASE = BIT(2),
- SNOR_F_S3AN_ADDR_DEFAULT = BIT(3),
- SNOR_F_READY_XSR_RDY = BIT(4),
- SNOR_F_USE_CLSR = BIT(5),
- SNOR_F_BROKEN_RESET = BIT(6),
+};
+/**
- struct flash_info - Forward declaration of a structure used internally by
spi_nor_scan()
- */
+struct flash_info;
+/* TODO: Remove, once all users of spi_flash interface are moved to MTD */ +#define spi_flash spi_nor
+/**
- struct spi_nor - Structure for defining a the SPI NOR layer
- @mtd: point to a mtd_info structure
- @lock: the lock for the read/write/erase/lock/unlock operations
- @dev: point to a spi device, or a spi nor controller device.
- @info: spi-nor part JDEC MFR id and other info
- @page_size: the page size of the SPI NOR
- @addr_width: number of address bytes
- @erase_opcode: the opcode for erasing a sector
- @read_opcode: the read opcode
- @read_dummy: the dummy needed by the read operation
- @program_opcode: the program opcode
- @sst_write_second: used by the SST write operation
- @flags: flag options for the current SPI-NOR (SNOR_F_*)
- @read_proto: the SPI protocol for read operations
- @write_proto: the SPI protocol for write operations
- @reg_proto the SPI protocol for read_reg/write_reg/erase operations
- @cmd_buf: used by the write_reg
- @prepare: [OPTIONAL] do some preparations for the
read/write/erase/lock/unlock operations
- @unprepare: [OPTIONAL] do some post work after the
read/write/erase/lock/unlock operations
- @read_reg: [DRIVER-SPECIFIC] read out the register
- @write_reg: [DRIVER-SPECIFIC] write data to the register
- @read: [DRIVER-SPECIFIC] read data from the SPI NOR
- @write: [DRIVER-SPECIFIC] write data to the SPI NOR
- @erase: [DRIVER-SPECIFIC] erase a sector of the SPI NOR
at the offset @offs; if not provided by the driver,
spi-nor will send the erase opcode via write_reg()
- @flash_lock: [FLASH-SPECIFIC] lock a region of the SPI NOR
- @flash_unlock: [FLASH-SPECIFIC] unlock a region of the SPI NOR
- @flash_is_locked: [FLASH-SPECIFIC] check if a region of the SPI NOR is
- @quad_enable: [FLASH-SPECIFIC] enables SPI NOR quad mode
completely locked
- @priv: the private data
- */
+struct spi_nor {
- struct mtd_info mtd;
+#ifndef __UBOOT__
- struct mutex lock;
- struct device *dev;
+#else
- struct udevice *dev;
- struct spi_slave *spi;
+#endif
- const struct flash_info *info;
- u32 page_size;
- u8 addr_width;
- u8 erase_opcode;
- u8 read_opcode;
- u8 read_dummy;
- u8 program_opcode;
- enum spi_nor_protocol read_proto;
- enum spi_nor_protocol write_proto;
- enum spi_nor_protocol reg_proto;
- bool sst_write_second;
- u32 flags;
- u8 cmd_buf[SPI_NOR_MAX_CMD_SIZE];
- int (*prepare)(struct spi_nor *nor, enum spi_nor_ops ops);
- void (*unprepare)(struct spi_nor *nor, enum spi_nor_ops ops);
- int (*read_reg)(struct spi_nor *nor, u8 opcode, u8 *buf, int len);
- int (*write_reg)(struct spi_nor *nor, u8 opcode, u8 *buf, int len);
- ssize_t (*read)(struct spi_nor *nor, loff_t from,
size_t len, u_char *read_buf);
- ssize_t (*write)(struct spi_nor *nor, loff_t to,
size_t len, const u_char *write_buf);
- int (*erase)(struct spi_nor *nor, loff_t offs);
- int (*flash_lock)(struct spi_nor *nor, loff_t ofs, uint64_t len);
- int (*flash_unlock)(struct spi_nor *nor, loff_t ofs, uint64_t len);
- int (*flash_is_locked)(struct spi_nor *nor, loff_t ofs, uint64_t len);
- int (*quad_enable)(struct spi_nor *nor);
- void *priv;
+/* Compatibility for spi_flash, remove once sf layer is merged with mtd */
- const char *name;
- u32 size;
- u32 sector_size;
- u32 erase_size;
+};
+static inline void spi_nor_set_flash_node(struct spi_nor *nor,
const struct device_node *np)
+{
- mtd_set_of_node(&nor->mtd, np);
+}
+static inline const struct +device_node *spi_nor_get_flash_node(struct spi_nor *nor) +{
- return mtd_get_of_node(&nor->mtd);
+}
+/**
- struct spi_nor_hwcaps - Structure for describing the hardware capabilies
- supported by the SPI controller (bus master).
- @mask: the bitmask listing all the supported hw capabilies
- */
+struct spi_nor_hwcaps {
- u32 mask;
+};
+/*
- *(Fast) Read capabilities.
- MUST be ordered by priority: the higher bit position, the higher priority.
- As a matter of performances, it is relevant to use Octo SPI protocols first,
- then Quad SPI protocols before Dual SPI protocols, Fast Read and lastly
- (Slow) Read.
- */
+#define SNOR_HWCAPS_READ_MASK GENMASK(14, 0) +#define SNOR_HWCAPS_READ BIT(0) +#define SNOR_HWCAPS_READ_FAST BIT(1) +#define SNOR_HWCAPS_READ_1_1_1_DTR BIT(2)
+#define SNOR_HWCAPS_READ_DUAL GENMASK(6, 3) +#define SNOR_HWCAPS_READ_1_1_2 BIT(3) +#define SNOR_HWCAPS_READ_1_2_2 BIT(4) +#define SNOR_HWCAPS_READ_2_2_2 BIT(5) +#define SNOR_HWCAPS_READ_1_2_2_DTR BIT(6)
+#define SNOR_HWCAPS_READ_QUAD GENMASK(10, 7) +#define SNOR_HWCAPS_READ_1_1_4 BIT(7) +#define SNOR_HWCAPS_READ_1_4_4 BIT(8) +#define SNOR_HWCAPS_READ_4_4_4 BIT(9) +#define SNOR_HWCAPS_READ_1_4_4_DTR BIT(10)
+#define SNOR_HWCPAS_READ_OCTO GENMASK(14, 11) +#define SNOR_HWCAPS_READ_1_1_8 BIT(11) +#define SNOR_HWCAPS_READ_1_8_8 BIT(12) +#define SNOR_HWCAPS_READ_8_8_8 BIT(13) +#define SNOR_HWCAPS_READ_1_8_8_DTR BIT(14)
+/*
- Page Program capabilities.
- MUST be ordered by priority: the higher bit position, the higher priority.
- Like (Fast) Read capabilities, Octo/Quad SPI protocols are preferred to the
- legacy SPI 1-1-1 protocol.
- Note that Dual Page Programs are not supported because there is no existing
- JEDEC/SFDP standard to define them. Also at this moment no SPI flash memory
- implements such commands.
- */
+#define SNOR_HWCAPS_PP_MASK GENMASK(22, 16) +#define SNOR_HWCAPS_PP BIT(16)
+#define SNOR_HWCAPS_PP_QUAD GENMASK(19, 17) +#define SNOR_HWCAPS_PP_1_1_4 BIT(17) +#define SNOR_HWCAPS_PP_1_4_4 BIT(18) +#define SNOR_HWCAPS_PP_4_4_4 BIT(19)
+#define SNOR_HWCAPS_PP_OCTO GENMASK(22, 20) +#define SNOR_HWCAPS_PP_1_1_8 BIT(20) +#define SNOR_HWCAPS_PP_1_8_8 BIT(21) +#define SNOR_HWCAPS_PP_8_8_8 BIT(22)
+/**
- spi_nor_scan() - scan the SPI NOR
- @nor: the spi_nor structure
- The drivers can use this function to scan the SPI NOR.
- In the scanning, it will try to get all the necessary information to
- fill the mtd_info{} and the spi_nor{}.
- Return: 0 for success, others for failure.
- */
+int spi_nor_scan(struct spi_nor *nor);
+/**
- spi_nor_restore_addr_mode() - restore the status of SPI NOR
- @nor: the spi_nor structure
- */
+void spi_nor_restore(struct spi_nor *nor);
+#endif