
HI,
I wanted to include a RNG implementation of the Mersenne-Twister into the SPL part of u-boot. However, although the (standalone) code compiles and runs fine on my linux box, u-boot stops to boot and I am not sure why. I am sure I am missing a rather basic design principle of the u-boot code but I can't figure which.
SPL stops booting at the twisted feedback line in function genrand_int32().
Here is the code of the hwinit-common.h in arch/arm/cpu/armv7/omap-common/:
#include <common.h> #include <asm/io.h> #include <asm/arch/sys_proto.h> #include <asm/sizes.h> #include <asm/emif.h> #include <asm/omap_common.h>
/* Period parameters */ #define N 624 #define M 397 #define MATRIX_A 0x9908b0dfUL /* constant vector a */ #define UPPER_MASK 0x80000000UL /* most significant w-r bits */ #define LOWER_MASK 0x7fffffffUL /* least significant r bits */
static unsigned long x[N]; /* the array for the state vector */ static unsigned long *p0, *p1, *pm;
DECLARE_GLOBAL_DATA_PTR;
/* initialize MT with a seed */ void init_genrand(unsigned long s) { int i;
x[0] = s & 0xffffffffUL; for (i = 1; i < N; ++i) { x[i] = (1812433253UL * (x[i - 1] ^ (x[i - 1] >> 30)) + i) & 0xffffffffUL; /* for >32 bit machines */ } p0 = x; p1 = x + 1; pm = x + M; }
/* initialize by an array with array-length init_key is the array for initializing keys key_length is its length */ void init_by_array(unsigned long init_key[], int key_length) { int i, j, k;
init_genrand(19650218UL); i = 1; j = 0; for (k = (N > key_length ? N : key_length); k; --k) { /* non linear */ x[i] = ((x[i] ^ ((x[i - 1] ^ (x[i - 1] >> 30)) * 1664525UL)) + init_key[j] + j) & 0xffffffffUL; /* for WORDSIZE > 32 machines */ if (++i >= N) { x[0] = x[N - 1]; i = 1; } if (++j >= key_length) { j = 0; } } for (k = N - 1; k; --k) { /* non linear */ x[i] = ((x[i] ^ ((x[i - 1] ^ (x[i - 1] >> 30)) * 1566083941UL)) - i) & 0xffffffffUL; /* for WORDSIZE > 32 machines */ if (++i >= N) { x[0] = x[N - 1]; i = 1; } } x[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */ }
/* generates a random number on the interval [0,0xffffffff] */ unsigned long genrand_int32(void) { unsigned long y;
if (!p0) { /* Default seed */ init_genrand(5489UL); }
/* Twisted feedback -- HERE WE GET STUCK*/ y = *p0 = *pm++ ^ (((*p0 & UPPER_MASK) | (*p1 & LOWER_MASK)) >> 1) ^ (-(*p1 & 1) & MATRIX_A); p0 = p1++;
if (pm == x + N) { pm = x; }
if (p1 == x + N) { p1 = x; } /* Temper */
y ^= y >> 11; y ^= y << 7 & 0x9d2c5680UL; y ^= y << 15 & 0xefc60000UL; y ^= y >> 18; return y; }
void do_set_mux(u32 base, struct pad_conf_entry const *array, int size) { int i; struct pad_conf_entry *pad = (struct pad_conf_entry *) array;
for (i = 0; i < size; i++, pad++) writew(pad->val, base + pad->offset); }
static void set_mux_conf_regs(void) { switch (omap_hw_init_context()) { case OMAP_INIT_CONTEXT_SPL: set_muxconf_regs_essential(); break; case OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL: #ifdef CONFIG_SYS_ENABLE_PADS_ALL set_muxconf_regs_non_essential(); #endif break; case OMAP_INIT_CONTEXT_UBOOT_FROM_NOR: case OMAP_INIT_CONTEXT_UBOOT_AFTER_CH: set_muxconf_regs_essential(); #ifdef CONFIG_SYS_ENABLE_PADS_ALL set_muxconf_regs_non_essential(); #endif break; } }
u32 cortex_rev(void) {
unsigned int rev;
/* Read Main ID Register (MIDR) */ asm ("mrc p15, 0, %0, c0, c0, 0" : "=r" (rev));
return rev; }
void omap_rev_string(void) { u32 omap_rev = omap_revision(); u32 omap_variant = (omap_rev & 0xFFFF0000) >> 16; u32 major_rev = (omap_rev & 0x00000F00) >> 8; u32 minor_rev = (omap_rev & 0x000000F0) >> 4;
printf("OMAP%x ES%x.%x\n", omap_variant, major_rev, minor_rev); }
#ifdef CONFIG_SPL_BUILD static void init_boot_params(void) { boot_params_ptr = (u32 *) &boot_params; } #endif
/* * Routine: s_init * Description: Does early system init of watchdog, muxing, andclocks * Watchdog disable is done always. For the rest what gets done * depends on the boot mode in which this function is executed * 1. s_init of SPL running from SRAM * 2. s_init of U-Boot running from FLASH * 3. s_init of U-Boot loaded to SDRAM by SPL * 4. s_init of U-Boot loaded to SDRAM by ROM code using the * Configuration Header feature * Please have a look at the respective functions to see what gets * done in each of these cases * This function is called with SRAM stack. */ void s_init(void) { init_omap_revision(); watchdog_init(); set_mux_conf_regs(); #ifdef CONFIG_SPL_BUILD setup_clocks_for_console(); preloader_console_init();
unsigned char current_rn_char; unsigned long current_rn; int i = 0; unsigned long init[4] = { 0x123, 0x234, 0x345, 0x456 }, length = 4;
// Start PRNG init_by_array(init, length);
for (i=0; i<22; i++){ current_rn = genrand_real1(); current_rn_char = (char)current_rn; secret[i] = current_rn_char; }
secret[22] = 0x00; printf("\nmeh2\n"); printf("\n[I] - These are our secret bytes (%d bytes):\n\t==================================\n\t", sizeof(secret)); i = 0; while(secret[i]!=0x0){ printf("0x%02x ", secret[i]); i++; } printf("\n\t==================================\n");
do_io_settings(); #endif prcm_init(); #ifdef CONFIG_SPL_BUILD timer_init();
/* For regular u-boot sdram_init() is called from dram_init() */ sdram_init(); init_boot_params(); #endif }
/* * Routine: wait_for_command_complete * Description: Wait for posting to finish on watchdog */ void wait_for_command_complete(struct watchdog *wd_base) { int pending = 1; do { pending = readl(&wd_base->wwps); } while (pending); }
/* * Routine: watchdog_init * Description: Shut down watch dogs */ void watchdog_init(void) { struct watchdog *wd2_base = (struct watchdog *)WDT2_BASE;
writel(WD_UNLOCK1, &wd2_base->wspr); wait_for_command_complete(wd2_base); writel(WD_UNLOCK2, &wd2_base->wspr); }
/* * This function finds the SDRAM size available in the system * based on DMM section configurations * This is needed because the size of memory installed may be * different on different versions of the board */ u32 omap_sdram_size(void) { u32 section, i, total_size = 0, size, addr;
for (i = 0; i < 4; i++) { section = __raw_readl(DMM_BASE + i*4); addr = section & EMIF_SYS_ADDR_MASK; /* See if the address is valid */ if ((addr >= DRAM_ADDR_SPACE_START) && (addr < DRAM_ADDR_SPACE_END)) { size = ((section & EMIF_SYS_SIZE_MASK) >> EMIF_SYS_SIZE_SHIFT); size = 1 << size; size *= SZ_16M; total_size += size; } }
return total_size; }
/* * Routine: dram_init * Description: sets uboots idea of sdram size */ int dram_init(void) { sdram_init(); gd->ram_size = omap_sdram_size(); return 0; }
/* * Print board information */ int checkboard(void) { puts(sysinfo.board_string); return 0; }
/* * This function is called by start_armboot. You can reliably use static * data. Any boot-time function that require static data should be * called from here */ int arch_cpu_init(void) { return 0; }
/* * get_device_type(): tell if GP/HS/EMU/TST */ u32 get_device_type(void) { return 0; }
/* * Print CPU information */ int print_cpuinfo(void) { puts("CPU : "); omap_rev_string();
return 0; }
/* * this uses the unique per-cpu info from the cpu fuses set at factory to * generate a 6-byte MAC address. Two bits in the generated code are used * to elaborate the generated address into four, so it can be used on multiple * network interfaces. */ void omap4_die_id_to_ethernet_mac(u8 *mac, int subtype) { struct ctrl_id *id_base = (struct ctrl_id *)(CTRL_BASE + 0x200); u32 idcode; u32 id[4];
idcode = readl(&id_base->idcode); id[0] = readl(&id_base->die_id_0); id[1] = readl(&id_base->die_id_1); id[2] = readl(&id_base->die_id_2); id[3] = readl(&id_base->die_id_3);
mac[0] = id[2]; mac[1] = id[2] >> 8; mac[2] = id[1]; mac[3] = id[1] >> 8; mac[4] = id[1] >> 16; mac[5] = id[1] >> 24; /* XOR other chip-specific data with ID */ idcode ^= id[3];
mac[0] ^= idcode; mac[1] ^= idcode >> 8; mac[2] ^= idcode >> 16; mac[3] ^= idcode >> 24;
/* allow four MACs from this same basic data */ mac[1] = (mac[1] & ~0xc0) | ((subtype & 3) << 6);
/* mark it as not multicast and outside official 80211 MAC namespace */ mac[0] = (mac[0] & ~1) | 2; }
#ifndef CONFIG_SYS_DCACHE_OFF void enable_caches(void) { /* Enable D-cache. I-cache is already enabled in start.S */ dcache_enable(); } #endif