
Hi guys,
Wonder any comments for this patch? Thanks
Chin Liang
On Wed, 2013-12-18 at 15:18 -0600, Chin Liang See wrote:
To add the Denali NAND driver support into U-Boot. It required information such as register base address from configuration header file within include/configs folder.
Signed-off-by: Chin Liang See clsee@altera.com Cc: Artem Bityutskiy artem.bityutskiy@linux.intel.com Cc: David Woodhouse David.Woodhouse@intel.com Cc: Brian Norris computersforpeace@gmail.com Cc: Scott Wood scottwood@freescale.com
drivers/mtd/nand/Makefile | 1 + drivers/mtd/nand/denali_nand.c | 1166 ++++++++++++++++++++++++++++++++++++++++ drivers/mtd/nand/denali_nand.h | 501 +++++++++++++++++ 3 files changed, 1668 insertions(+) create mode 100644 drivers/mtd/nand/denali_nand.c create mode 100644 drivers/mtd/nand/denali_nand.h
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index 02b149c..24e8218 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile @@ -39,6 +39,7 @@ obj-$(CONFIG_NAND_ECC_BCH) += nand_bch.o obj-$(CONFIG_NAND_ATMEL) += atmel_nand.o obj-$(CONFIG_DRIVER_NAND_BFIN) += bfin_nand.o obj-$(CONFIG_NAND_DAVINCI) += davinci_nand.o +obj-$(CONFIG_NAND_DENALI) += denali_nand.o obj-$(CONFIG_NAND_FSL_ELBC) += fsl_elbc_nand.o obj-$(CONFIG_NAND_FSL_IFC) += fsl_ifc_nand.o obj-$(CONFIG_NAND_FSL_UPM) += fsl_upm.o diff --git a/drivers/mtd/nand/denali_nand.c b/drivers/mtd/nand/denali_nand.c new file mode 100644 index 0000000..55246c9 --- /dev/null +++ b/drivers/mtd/nand/denali_nand.c @@ -0,0 +1,1166 @@ +/*
- Copyright (C) 2013 Altera Corporation <www.altera.com>
- Copyright (C) 2009-2010, Intel Corporation and its suppliers.
- SPDX-License-Identifier: GPL-2.0+
- */
+#include <common.h> +#include <nand.h> +#include <asm/errno.h> +#include <asm/io.h>
+#include "denali_nand.h"
+/* We define a module parameter that allows the user to override
- the hardware and decide what timing mode should be used.
- */
+#define NAND_DEFAULT_TIMINGS -1
+static struct denali_nand_info denali; +static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
+/* We define a macro here that combines all interrupts this driver uses into
- a single constant value, for convenience. */
+#define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \
INTR_STATUS__ECC_TRANSACTION_DONE | \
INTR_STATUS__ECC_ERR | \
INTR_STATUS__PROGRAM_FAIL | \
INTR_STATUS__LOAD_COMP | \
INTR_STATUS__PROGRAM_COMP | \
INTR_STATUS__TIME_OUT | \
INTR_STATUS__ERASE_FAIL | \
INTR_STATUS__RST_COMP | \
INTR_STATUS__ERASE_COMP | \
INTR_STATUS__ECC_UNCOR_ERR | \
INTR_STATUS__INT_ACT | \
INTR_STATUS__LOCKED_BLK)
+/* indicates whether or not the internal value for the flash bank is
- valid or not */
+#define CHIP_SELECT_INVALID -1
+#define SUPPORT_8BITECC 1
+/* This macro divides two integers and rounds fractional values up
- to the nearest integer value. */
+#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
+/* These constants are defined by the driver to enable common driver
- configuration options. */
+#define SPARE_ACCESS 0x41 +#define MAIN_ACCESS 0x42 +#define MAIN_SPARE_ACCESS 0x43
+#define DENALI_UNLOCK_START 0x10 +#define DENALI_UNLOCK_END 0x11 +#define DENALI_LOCK 0x21 +#define DENALI_LOCK_TIGHT 0x31 +#define DENALI_BUFFER_LOAD 0x60 +#define DENALI_BUFFER_WRITE 0x62
+#define DENALI_READ 0 +#define DENALI_WRITE 0x100
+/* types of device accesses. We can issue commands and get status */ +#define COMMAND_CYCLE 0 +#define ADDR_CYCLE 1 +#define STATUS_CYCLE 2
+/* this is a helper macro that allows us to
- format the bank into the proper bits for the controller */
+#define BANK(x) ((x) << 24)
+/* Interrupts are cleared by writing a 1 to the appropriate status bit */ +static inline void clear_interrupt(uint32_t irq_mask) +{
- uint32_t intr_status_reg = 0;
- intr_status_reg = INTR_STATUS(denali.flash_bank);
- __raw_writel(irq_mask, denali.flash_reg + intr_status_reg);
+}
+static uint32_t read_interrupt_status(void) +{
- uint32_t intr_status_reg = 0;
- intr_status_reg = INTR_STATUS(denali.flash_bank);
- return __raw_readl(denali.flash_reg + intr_status_reg);
+}
+static void clear_interrupts(void) +{
- uint32_t status = 0x0;
- status = read_interrupt_status();
- clear_interrupt(status);
- denali.irq_status = 0x0;
+}
+static void denali_irq_enable(uint32_t int_mask) +{
- int i;
- for (i = 0; i < denali.max_banks; ++i)
__raw_writel(int_mask, denali.flash_reg + INTR_EN(i));
+}
+static uint32_t wait_for_irq(uint32_t irq_mask) +{
- unsigned long comp_res = 1000;
- uint32_t intr_status = 0;
- do {
intr_status = read_interrupt_status() & DENALI_IRQ_ALL;
if (intr_status & irq_mask) {
denali.irq_status &= ~irq_mask;
/* our interrupt was detected */
break;
}
udelay(1);
comp_res--;
- } while (comp_res != 0);
- if (comp_res == 0) {
/* timeout */
printf("Denali timeout with interrupt status %08x\n",
read_interrupt_status());
intr_status = 0;
- }
- return intr_status;
+}
+/* Certain operations for the denali NAND controller use
- an indexed mode to read/write data. The operation is
- performed by writing the address value of the command
- to the device memory followed by the data. This function
- abstracts this common operation.
+*/ +static void index_addr(uint32_t address, uint32_t data) +{
- __raw_writel(address, denali.flash_mem);
- __raw_writel(data, denali.flash_mem + 0x10);
+}
+/* Perform an indexed read of the device */ +static void index_addr_read_data(uint32_t address, uint32_t *pdata) +{
- __raw_writel(address, denali.flash_mem);
- *pdata = __raw_readl(denali.flash_mem + 0x10);
+}
+/* We need to buffer some data for some of the NAND core routines.
- The operations manage buffering that data. */
+static void reset_buf(void) +{
- denali.buf.head = denali.buf.tail = 0;
+}
+static void write_byte_to_buf(uint8_t byte) +{
- BUG_ON(denali.buf.tail >= sizeof(denali.buf.buf));
- denali.buf.buf[denali.buf.tail++] = byte;
+}
+/* resets a specific device connected to the core */ +static void reset_bank(void) +{
- uint32_t irq_status = 0;
- uint32_t irq_mask = INTR_STATUS__RST_COMP |
INTR_STATUS__TIME_OUT;
- clear_interrupts();
- __raw_writel(1 << denali.flash_bank, denali.flash_reg + DEVICE_RESET);
- irq_status = wait_for_irq(irq_mask);
- if (irq_status & INTR_STATUS__TIME_OUT)
debug(KERN_ERR "reset bank failed.\n");
+}
+/* Reset the flash controller */ +static uint16_t denali_nand_reset(void) +{
- uint32_t i;
- for (i = 0 ; i < denali.max_banks; i++)
__raw_writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
denali.flash_reg + INTR_STATUS(i));
- for (i = 0 ; i < denali.max_banks; i++) {
__raw_writel(1 << i, denali.flash_reg + DEVICE_RESET);
while (!(__raw_readl(denali.flash_reg + INTR_STATUS(i)) &
(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
if (__raw_readl(denali.flash_reg + INTR_STATUS(i)) &
INTR_STATUS__TIME_OUT)
debug(KERN_DEBUG "NAND Reset operation "
"timed out on bank %d\n", i);
- }
- for (i = 0; i < denali.max_banks; i++)
__raw_writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
denali.flash_reg + INTR_STATUS(i));
- return PASS;
+}
+/* this routine calculates the ONFI timing values for a given mode and
- programs the clocking register accordingly. The mode is determined by
- the get_onfi_nand_para routine.
- */
+static void nand_onfi_timing_set(uint16_t mode) +{
- uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
- uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
- uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
- uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
- uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
- uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
- uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
- uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
- uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
- uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
- uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
- uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
- uint16_t TclsRising = 1;
- uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
- uint16_t dv_window = 0;
- uint16_t en_lo, en_hi;
- uint16_t acc_clks;
- uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
- en_lo = CEIL_DIV(Trp[mode], CLK_X);
- en_hi = CEIL_DIV(Treh[mode], CLK_X);
+#if ONFI_BLOOM_TIME
- if ((en_hi * CLK_X) < (Treh[mode] + 2))
en_hi++;
+#endif
- if ((en_lo + en_hi) * CLK_X < Trc[mode])
en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
- if ((en_lo + en_hi) < CLK_MULTI)
en_lo += CLK_MULTI - en_lo - en_hi;
- while (dv_window < 8) {
data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
data_invalid =
data_invalid_rhoh <
data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
dv_window = data_invalid - Trea[mode];
if (dv_window < 8)
en_lo++;
- }
- acc_clks = CEIL_DIV(Trea[mode], CLK_X);
- while (((acc_clks * CLK_X) - Trea[mode]) < 3)
acc_clks++;
- if ((data_invalid - acc_clks * CLK_X) < 2)
debug(KERN_WARNING "%s, Line %d: Warning!\n",
__FILE__, __LINE__);
- addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
- re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
- re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
- we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
- cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
- if (!TclsRising)
cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
- if (cs_cnt == 0)
cs_cnt = 1;
- if (Tcea[mode]) {
while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
cs_cnt++;
- }
+#if MODE5_WORKAROUND
- if (mode == 5)
acc_clks = 5;
+#endif
- /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
- if ((__raw_readl(denali.flash_reg + MANUFACTURER_ID) == 0) &&
(__raw_readl(denali.flash_reg + DEVICE_ID) == 0x88))
acc_clks = 6;
- __raw_writel(acc_clks, denali.flash_reg + ACC_CLKS);
- __raw_writel(re_2_we, denali.flash_reg + RE_2_WE);
- __raw_writel(re_2_re, denali.flash_reg + RE_2_RE);
- __raw_writel(we_2_re, denali.flash_reg + WE_2_RE);
- __raw_writel(addr_2_data, denali.flash_reg + ADDR_2_DATA);
- __raw_writel(en_lo, denali.flash_reg + RDWR_EN_LO_CNT);
- __raw_writel(en_hi, denali.flash_reg + RDWR_EN_HI_CNT);
- __raw_writel(cs_cnt, denali.flash_reg + CS_SETUP_CNT);
+}
+/* queries the NAND device to see what ONFI modes it supports. */ +static uint16_t get_onfi_nand_para(void) +{
- int i;
- /* we needn't to do a reset here because driver has already
* reset all the banks before
* */
- if (!(__raw_readl(denali.flash_reg + ONFI_TIMING_MODE) &
ONFI_TIMING_MODE__VALUE))
return FAIL;
- for (i = 5; i > 0; i--) {
if (__raw_readl(denali.flash_reg + ONFI_TIMING_MODE) &
(0x01 << i))
break;
- }
- nand_onfi_timing_set(i);
- /* By now, all the ONFI devices we know support the page cache */
- /* rw feature. So here we enable the pipeline_rw_ahead feature */
- /* __raw_writel(1, denali.flash_reg + CACHE_WRITE_ENABLE); */
- /* __raw_writel(1, denali.flash_reg + CACHE_READ_ENABLE); */
- return PASS;
+}
+static void get_samsung_nand_para(uint8_t device_id) +{
- if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
/* Set timing register values according to datasheet */
__raw_writel(5, denali.flash_reg + ACC_CLKS);
__raw_writel(20, denali.flash_reg + RE_2_WE);
__raw_writel(12, denali.flash_reg + WE_2_RE);
__raw_writel(14, denali.flash_reg + ADDR_2_DATA);
__raw_writel(3, denali.flash_reg + RDWR_EN_LO_CNT);
__raw_writel(2, denali.flash_reg + RDWR_EN_HI_CNT);
__raw_writel(2, denali.flash_reg + CS_SETUP_CNT);
- }
+}
+static void get_toshiba_nand_para(void) +{
- uint32_t tmp;
- /* Workaround to fix a controller bug which reports a wrong */
- /* spare area size for some kind of Toshiba NAND device */
- if ((__raw_readl(denali.flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
(__raw_readl(denali.flash_reg + DEVICE_SPARE_AREA_SIZE)
== 64)){
__raw_writel(216, denali.flash_reg + DEVICE_SPARE_AREA_SIZE);
tmp = __raw_readl(denali.flash_reg + DEVICES_CONNECTED) *
__raw_readl(denali.flash_reg + DEVICE_SPARE_AREA_SIZE);
__raw_writel(tmp,
denali.flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+#if SUPPORT_15BITECC
__raw_writel(15, denali.flash_reg + ECC_CORRECTION);
+#elif SUPPORT_8BITECC
__raw_writel(8, denali.flash_reg + ECC_CORRECTION);
+#endif
- }
+}
+static void get_hynix_nand_para(uint8_t device_id) +{
- uint32_t main_size, spare_size;
- switch (device_id) {
- case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
- case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
__raw_writel(128, denali.flash_reg + PAGES_PER_BLOCK);
__raw_writel(4096, denali.flash_reg + DEVICE_MAIN_AREA_SIZE);
__raw_writel(224, denali.flash_reg + DEVICE_SPARE_AREA_SIZE);
main_size = 4096 *
__raw_readl(denali.flash_reg + DEVICES_CONNECTED);
spare_size = 224 *
__raw_readl(denali.flash_reg + DEVICES_CONNECTED);
__raw_writel(main_size,
denali.flash_reg + LOGICAL_PAGE_DATA_SIZE);
__raw_writel(spare_size,
denali.flash_reg + LOGICAL_PAGE_SPARE_SIZE);
__raw_writel(0, denali.flash_reg + DEVICE_WIDTH);
+#if SUPPORT_15BITECC
__raw_writel(15, denali.flash_reg + ECC_CORRECTION);
+#elif SUPPORT_8BITECC
__raw_writel(8, denali.flash_reg + ECC_CORRECTION);
+#endif
break;
- default:
debug(KERN_WARNING
"Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
"Will use default parameter values instead.\n",
device_id);
- }
+}
+/* determines how many NAND chips are connected to the controller. Note for
- Intel CE4100 devices we don't support more than one device.
- */
+static void find_valid_banks(void) +{
- uint32_t id[denali.max_banks];
- int i;
- denali.total_used_banks = 1;
- for (i = 0; i < denali.max_banks; i++) {
index_addr((uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
index_addr((uint32_t)(MODE_11 | (i << 24) | 1), 0);
index_addr_read_data((uint32_t)(MODE_11 | (i << 24) | 2),
&id[i]);
if (i == 0) {
if (!(id[i] & 0x0ff))
break; /* WTF? */
} else {
if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
denali.total_used_banks++;
else
break;
}
- }
+}
+/*
- Use the configuration feature register to determine the maximum number of
- banks that the hardware supports.
- */
+static void detect_max_banks(void) +{
- uint32_t features = __raw_readl(denali.flash_reg + FEATURES);
- denali.max_banks = 2 << (features & FEATURES__N_BANKS);
+}
+static void detect_partition_feature(void) +{
- /* For MRST platform, denali.fwblks represent the
* number of blocks firmware is taken,
* FW is in protect partition and MTD driver has no
* permission to access it. So let driver know how many
* blocks it can't touch.
* */
- if (__raw_readl(denali.flash_reg + FEATURES) & FEATURES__PARTITION) {
if ((__raw_readl(denali.flash_reg + PERM_SRC_ID(1)) &
PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
denali.fwblks =
((__raw_readl(denali.flash_reg + MIN_MAX_BANK(1)) &
MIN_MAX_BANK__MIN_VALUE) *
denali.blksperchip)
+
(__raw_readl(denali.flash_reg + MIN_BLK_ADDR(1)) &
MIN_BLK_ADDR__VALUE);
} else
denali.fwblks = SPECTRA_START_BLOCK;
- } else
denali.fwblks = SPECTRA_START_BLOCK;
+}
+static uint16_t denali_nand_timing_set(void) +{
- uint16_t status = PASS;
- uint32_t id_bytes[5], addr;
- uint8_t i, maf_id, device_id;
- /* Use read id method to get device ID and other
* params. For some NAND chips, controller can't
* report the correct device ID by reading from
* DEVICE_ID register
* */
- addr = (uint32_t)MODE_11 | BANK(denali.flash_bank);
- index_addr((uint32_t)addr | 0, 0x90);
- index_addr((uint32_t)addr | 1, 0);
- for (i = 0; i < 5; i++)
index_addr_read_data(addr | 2, &id_bytes[i]);
- maf_id = id_bytes[0];
- device_id = id_bytes[1];
- if (__raw_readl(denali.flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
if (FAIL == get_onfi_nand_para())
return FAIL;
- } else if (maf_id == 0xEC) { /* Samsung NAND */
get_samsung_nand_para(device_id);
- } else if (maf_id == 0x98) { /* Toshiba NAND */
get_toshiba_nand_para();
- } else if (maf_id == 0xAD) { /* Hynix NAND */
get_hynix_nand_para(device_id);
- }
- find_valid_banks();
- detect_partition_feature();
- /* If the user specified to override the default timings
* with a specific ONFI mode, we apply those changes here.
*/
- if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
nand_onfi_timing_set(onfi_timing_mode);
- return status;
+}
+static void denali_set_intr_modes(uint16_t INT_ENABLE) +{
- if (INT_ENABLE)
__raw_writel(1, denali.flash_reg + GLOBAL_INT_ENABLE);
- else
__raw_writel(0, denali.flash_reg + GLOBAL_INT_ENABLE);
+}
+/* validation function to verify that the controlling software is making
- a valid request
- */
+static inline bool is_flash_bank_valid(int flash_bank) +{
- return (flash_bank >= 0 && flash_bank < 4);
+}
+static void denali_irq_init(void) +{
- uint32_t int_mask = 0;
- int i;
- /* Disable global interrupts */
- denali_set_intr_modes(false);
- int_mask = DENALI_IRQ_ALL;
- /* Clear all status bits */
- for (i = 0; i < denali.max_banks; ++i)
__raw_writel(0xFFFF, denali.flash_reg + INTR_STATUS(i));
- denali_irq_enable(int_mask);
+}
+/* This helper function setups the registers for ECC and whether or not
- the spare area will be transferred. */
+static void setup_ecc_for_xfer(bool ecc_en, bool transfer_spare) +{
- int ecc_en_flag = 0, transfer_spare_flag = 0;
- /* set ECC, transfer spare bits if needed */
- ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
- transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
- /* Enable spare area/ECC per user's request. */
- __raw_writel(ecc_en_flag, denali.flash_reg + ECC_ENABLE);
- /* applicable for MAP01 only */
- __raw_writel(transfer_spare_flag,
denali.flash_reg + TRANSFER_SPARE_REG);
+}
+/* sends a pipeline command operation to the controller. See the Denali NAND
- controller's user guide for more information (section 4.2.3.6).
- */
+static int denali_send_pipeline_cmd(bool ecc_en, bool transfer_spare,
int access_type, int op)
+{
- uint32_t addr = 0x0, cmd = 0x0, irq_status = 0, irq_mask = 0;
- uint32_t page_count = 1; /* always read a page */
- if (op == DENALI_READ)
irq_mask = INTR_STATUS__LOAD_COMP;
- else if (op == DENALI_WRITE)
irq_mask = INTR_STATUS__PROGRAM_COMP |
INTR_STATUS__PROGRAM_FAIL;
- else
BUG();
- /* clear interrupts */
- clear_interrupts();
- /* setup ECC and transfer spare reg */
- setup_ecc_for_xfer(ecc_en, transfer_spare);
- addr = BANK(denali.flash_bank) | denali.page;
- /* setup the acccess type */
- cmd = MODE_10 | addr;
- index_addr((uint32_t)cmd, access_type);
- /* setup the pipeline command */
- if (access_type == SPARE_ACCESS && op == DENALI_WRITE)
index_addr((uint32_t)cmd, DENALI_BUFFER_WRITE);
- else if (access_type == SPARE_ACCESS && op == DENALI_READ)
index_addr((uint32_t)cmd, DENALI_BUFFER_LOAD);
- else
index_addr((uint32_t)cmd, 0x2000 | op | page_count);
- /* wait for command to be accepted */
- irq_status = wait_for_irq(irq_mask);
- if ((irq_status & irq_mask) != irq_mask)
return FAIL;
- if (access_type != SPARE_ACCESS) {
cmd = MODE_01 | addr;
__raw_writel(cmd, denali.flash_mem);
- }
- return PASS;
+}
+/* helper function that simply writes a buffer to the flash */ +static int write_data_to_flash_mem(const uint8_t *buf,
int len)
+{
- uint32_t i = 0, *buf32;
- /* verify that the len is a multiple of 4. see comment in
* read_data_from_flash_mem() */
- BUG_ON((len % 4) != 0);
- /* write the data to the flash memory */
- buf32 = (uint32_t *)buf;
- for (i = 0; i < len / 4; i++)
__raw_writel(*buf32++, denali.flash_mem + 0x10);
- return i*4; /* intent is to return the number of bytes read */
+}
+static void denali_mode_main_access(void) +{
- uint32_t addr, cmd;
- addr = BANK(denali.flash_bank) | denali.page;
- cmd = MODE_10 | addr;
- index_addr((uint32_t)cmd, MAIN_ACCESS);
+}
+static void denali_mode_main_spare_access(void) +{
- uint32_t addr, cmd;
- addr = BANK(denali.flash_bank) | denali.page;
- cmd = MODE_10 | addr;
- index_addr((uint32_t)cmd, MAIN_SPARE_ACCESS);
+}
+/* Writes OOB data to the device.
- This code unused under normal U-Boot console as normally page write raw
- to be used for write oob data with main data.
- */
+static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) +{
- uint32_t cmd;
- denali.page = page;
- debug("* write_oob_data *\n");
- /* We need to write to buffer first through MAP00 command */
- cmd = MODE_00 | BANK(denali.flash_bank);
- __raw_writel(cmd, denali.flash_mem);
- /* send the data into flash buffer */
- write_data_to_flash_mem(buf, mtd->oobsize);
- /* activate the write through MAP10 commands */
- if (denali_send_pipeline_cmd(false, false,
SPARE_ACCESS, DENALI_WRITE) != PASS)
return -EIO;
- return 0;
+}
+/* this function examines buffers to see if they contain data that
- indicate that the buffer is part of an erased region of flash.
- */
+bool is_erased(uint8_t *buf, int len) +{
- int i = 0;
- for (i = 0; i < len; i++)
if (buf[i] != 0xFF)
return false;
- return true;
+}
+/* programs the controller to either enable/disable DMA transfers */ +static void denali_enable_dma(bool en) +{
- uint32_t reg_val = 0x0;
- if (en)
reg_val = DMA_ENABLE__FLAG;
- __raw_writel(reg_val, denali.flash_reg + DMA_ENABLE);
- __raw_readl(denali.flash_reg + DMA_ENABLE);
+}
+/* setups the HW to perform the data DMA */ +static void denali_setup_dma_sequence(int op) +{
- const int page_count = 1;
- uint32_t mode;
- uint32_t addr = (uint32_t)denali.buf.dma_buf;
- mode = MODE_10 | BANK(denali.flash_bank);
- /* DMA is a four step process */
- /* 1. setup transfer type and # of pages */
- index_addr(mode | denali.page, 0x2000 | op | page_count);
- /* 2. set memory high address bits 23:8 */
- index_addr(mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
- /* 3. set memory low address bits 23:8 */
- index_addr(mode | ((uint16_t)addr << 8), 0x2300);
- /* 4. interrupt when complete, burst len = 64 bytes*/
- index_addr(mode | 0x14000, 0x2400);
+}
+/* Common DMA function */ +static uint32_t denali_dma_configuration(uint32_t ops, bool raw_xfer,
- uint32_t irq_mask, int oob_required)
+{
- uint32_t irq_status = 0;
- /* setup_ecc_for_xfer(bool ecc_en, bool transfer_spare) */
- setup_ecc_for_xfer(!raw_xfer, oob_required);
- /* clear any previous interrupt flags */
- clear_interrupts();
- /* enable the DMA */
- denali_enable_dma(true);
- /* setup the DMA */
- denali_setup_dma_sequence(ops);
- /* wait for operation to complete */
- irq_status = wait_for_irq(irq_mask);
- /* if ECC fault happen, seems we need delay before turning off DMA.
* If not, the controller will go into non responsive condition */
- if (irq_status & INTR_STATUS__ECC_UNCOR_ERR)
udelay(100);
- /* disable the DMA */
- denali_enable_dma(false);
- return irq_status;
+}
+static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, bool raw_xfer, int oob_required)
+{
- uint32_t irq_status = 0;
- uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
- denali.status = PASS;
- /* copy buffer into DMA buffer */
- memcpy((void *)denali.buf.dma_buf, buf, mtd->writesize);
- /* need extra memcpoy for raw transfer */
- if (raw_xfer)
memcpy((void *)denali.buf.dma_buf + mtd->writesize,
chip->oob_poi, mtd->oobsize);
- /* setting up DMA */
- irq_status = denali_dma_configuration(DENALI_WRITE, raw_xfer, irq_mask,
oob_required);
- /* if timeout happen, error out */
- if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) {
debug("DMA timeout for denali write_page\n");
denali.status = NAND_STATUS_FAIL;
return -EIO;
- }
- if (irq_status & INTR_STATUS__LOCKED_BLK) {
debug("Failed as write to locked block\n");
denali.status = NAND_STATUS_FAIL;
return -EIO;
- }
- return 0;
+}
+/* NAND core entry points */
+/*
- this is the callback that the NAND core calls to write a page. Since
- writing a page with ECC or without is similar, all the work is done
- by write_page above.
- */
+static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required)
+{
- /*
* for regular page writes, we let HW handle all the ECC
* data written to the device.
*/
- debug("denali_write_page at page %08x\n", denali.page);
- if (oob_required)
/* switch to main + spare access */
denali_mode_main_spare_access();
- else
/* switch to main access only */
denali_mode_main_access();
- return write_page(mtd, chip, buf, false, oob_required);
+}
+/*
- This is the callback that the NAND core calls to write a page without ECC.
- raw access is similar to ECC page writes, so all the work is done in the
- write_page() function above.
- */
+static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required)
+{
- /*
* for raw page writes, we want to disable ECC and simply write
* whatever data is in the buffer.
*/
- debug("denali_write_page_raw at page %08x\n", denali.page);
- if (oob_required)
/* switch to main + spare access */
denali_mode_main_spare_access();
- else
/* switch to main access only */
denali_mode_main_access();
- return write_page(mtd, chip, buf, true, oob_required);
+}
+static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
+{
- return write_oob_data(mtd, chip->oob_poi, page);
+}
+/* raw include ECC value and all the spare area */ +static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
+{
- uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP;
- debug("denali_read_page_raw at page %08x\n", page);
- if (denali.page != page) {
debug("Missing NAND_CMD_READ0 command\n");
return -EIO;
- }
- if (oob_required)
/* switch to main + spare access */
denali_mode_main_spare_access();
- else
/* switch to main access only */
denali_mode_main_access();
- /* setting up the DMA where ecc_enable is false */
- irq_status = denali_dma_configuration(DENALI_READ, true, irq_mask,
oob_required);
- /* if timeout happen, error out */
- if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) {
debug("DMA timeout for denali_read_page_raw\n");
return -EIO;
- }
- /* splitting the content to destination buffer holder */
- memcpy(chip->oob_poi, (const void *)(denali.buf.dma_buf +
mtd->writesize), mtd->oobsize);
- memcpy(buf, (const void *)denali.buf.dma_buf, mtd->writesize);
- debug("buf %02x %02x\n", buf[0], buf[1]);
- debug("chip->oob_poi %02x %02x\n", chip->oob_poi[0], chip->oob_poi[1]);
- return 0;
+}
+static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
+{
- uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP;
- debug("denali_read_page at page %08x\n", page);
- if (denali.page != page) {
debug("Missing NAND_CMD_READ0 command\n");
return -EIO;
- }
- if (oob_required)
/* switch to main + spare access */
denali_mode_main_spare_access();
- else
/* switch to main access only */
denali_mode_main_access();
- /* setting up the DMA where ecc_enable is true */
- irq_status = denali_dma_configuration(DENALI_READ, false, irq_mask,
oob_required);
- memcpy(buf, (const void *)denali.buf.dma_buf, mtd->writesize);
- debug("buf %02x %02x\n", buf[0], buf[1]);
- /* check whether any ECC error */
- if (irq_status & INTR_STATUS__ECC_UNCOR_ERR) {
/* is the ECC cause by erase page, check using read_page_raw */
debug(" Uncorrected ECC detected\n");
denali_read_page_raw(mtd, chip, buf, oob_required, denali.page);
if (is_erased(buf, mtd->writesize) == true &&
is_erased(chip->oob_poi, mtd->oobsize) == true) {
debug(" ECC error cause by erased block\n");
/* false alarm, return the 0xFF */
} else
return -EIO;
- }
- memcpy(buf, (const void *)denali.buf.dma_buf, mtd->writesize);
- return 0;
+}
+static uint8_t denali_read_byte(struct mtd_info *mtd) +{
- uint32_t addr, result;
- addr = (uint32_t)MODE_11 | BANK(denali.flash_bank);
- index_addr_read_data((uint32_t)addr | 2, &result);
- return (uint8_t)result & 0xFF;
+}
+static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
+{
- debug("denali_read_oob at page %08x\n", page);
- denali.page = page;
- return denali_read_page_raw(mtd, chip, denali.buf.buf, 1, page);
+}
+static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{
- uint32_t i, addr, result;
- /* delay for tR (data transfer from Flash array to data register) */
- udelay(25);
- /* ensure device completed else additional delay and polling */
- wait_for_irq(INTR_STATUS__INT_ACT);
- addr = (uint32_t)MODE_11 | BANK(denali.flash_bank);
- for (i = 0; i < len; i++) {
index_addr_read_data((uint32_t)addr | 2, &result);
write_byte_to_buf(result);
- }
- memcpy(buf, denali.buf.buf, len);
+}
+static void denali_select_chip(struct mtd_info *mtd, int chip) +{
- denali.flash_bank = chip;
+}
+static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) +{
- int status = denali.status;
- denali.status = 0;
- return status;
+}
+static void denali_erase(struct mtd_info *mtd, int page) +{
- uint32_t cmd = 0x0, irq_status = 0;
- debug("denali_erase at page %08x\n", page);
- /* clear interrupts */
- clear_interrupts();
- /* setup page read request for access type */
- cmd = MODE_10 | BANK(denali.flash_bank) | page;
- index_addr((uint32_t)cmd, 0x1);
- /* wait for erase to complete or failure to occur */
- irq_status = wait_for_irq(INTR_STATUS__ERASE_COMP |
INTR_STATUS__ERASE_FAIL);
- if (irq_status & INTR_STATUS__ERASE_FAIL ||
irq_status & INTR_STATUS__LOCKED_BLK)
denali.status = NAND_STATUS_FAIL;
- else
denali.status = PASS;
+}
+static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
int page)
+{
- uint32_t addr;
- switch (cmd) {
- case NAND_CMD_PAGEPROG:
break;
- case NAND_CMD_STATUS:
addr = (uint32_t)MODE_11 | BANK(denali.flash_bank);
index_addr((uint32_t)addr | 0, cmd);
break;
- case NAND_CMD_PARAM:
clear_interrupts();
- case NAND_CMD_READID:
reset_buf();
/* sometimes ManufactureId read from register is not right
* e.g. some of Micron MT29F32G08QAA MLC NAND chips
* So here we send READID cmd to NAND insteand
* */
addr = (uint32_t)MODE_11 | BANK(denali.flash_bank);
index_addr((uint32_t)addr | 0, cmd);
index_addr((uint32_t)addr | 1, col & 0xFF);
break;
- case NAND_CMD_READ0:
- case NAND_CMD_SEQIN:
denali.page = page;
break;
- case NAND_CMD_RESET:
reset_bank();
break;
- case NAND_CMD_READOOB:
/* TODO: Read OOB data */
break;
- case NAND_CMD_ERASE1:
/*
* supporting block erase only, not multiblock erase as
* it will cross plane and software need complex calculation
* to identify the block count for the cross plane
*/
denali_erase(mtd, page);
break;
- case NAND_CMD_ERASE2:
/* nothing to do here as it was done during NAND_CMD_ERASE1 */
break;
- case NAND_CMD_UNLOCK1:
addr = (uint32_t)MODE_10 | BANK(denali.flash_bank) | page;
index_addr((uint32_t)addr | 0, DENALI_UNLOCK_START);
break;
- case NAND_CMD_UNLOCK2:
addr = (uint32_t)MODE_10 | BANK(denali.flash_bank) | page;
index_addr((uint32_t)addr | 0, DENALI_UNLOCK_END);
break;
- case NAND_CMD_LOCK:
addr = (uint32_t)MODE_10 | BANK(denali.flash_bank);
index_addr((uint32_t)addr | 0, DENALI_LOCK);
break;
- case NAND_CMD_LOCK_TIGHT:
addr = (uint32_t)MODE_10 | BANK(denali.flash_bank);
index_addr((uint32_t)addr | 0, DENALI_LOCK_TIGHT);
break;
- default:
printf(": unsupported command received 0x%x\n", cmd);
break;
- }
+}
+/* stubs for ECC functions not used by the NAND core */ +static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
uint8_t *ecc_code)
+{
- debug("Should not be called as ECC handled by hardware\n");
- BUG();
- return -EIO;
+}
+static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
uint8_t *read_ecc, uint8_t *calc_ecc)
+{
- debug("Should not be called as ECC handled by hardware\n");
- BUG();
- return -EIO;
+}
+static void denali_ecc_hwctl(struct mtd_info *mtd, int mode) +{
- debug("Should not be called as ECC handled by hardware\n");
- BUG();
+} +/* end NAND core entry points */
+/* Initialization code to bring the device up to a known good state */ +static void denali_hw_init(void) +{
- /*
* tell driver how many bit controller will skip before writing
* ECC code in OOB. This is normally used for bad block marker
*/
- __raw_writel(CONFIG_NAND_DENALI_SPARE_AREA_SKIP_BYTES,
denali.flash_reg + SPARE_AREA_SKIP_BYTES);
- detect_max_banks();
- denali_nand_reset();
- __raw_writel(0x0F, denali.flash_reg + RB_PIN_ENABLED);
- __raw_writel(CHIP_EN_DONT_CARE__FLAG,
denali.flash_reg + CHIP_ENABLE_DONT_CARE);
- __raw_writel(0xffff, denali.flash_reg + SPARE_AREA_MARKER);
- /* Should set value for these registers when init */
- __raw_writel(0, denali.flash_reg + TWO_ROW_ADDR_CYCLES);
- __raw_writel(1, denali.flash_reg + ECC_ENABLE);
- denali_nand_timing_set();
- denali_irq_init();
+}
+/*
- Although controller spec said SLC ECC is forceb to be 4bit, but denali
- controller in MRST only support 15bit and 8bit ECC correction
- */
+#ifdef CONFIG_SYS_NAND_15BIT_HW_ECC_OOBFIRST +#define ECC_15BITS 26 +static struct nand_ecclayout nand_15bit_oob = {
- .eccbytes = ECC_15BITS,
+}; +#else +#define ECC_8BITS 14 +static struct nand_ecclayout nand_8bit_oob = {
- .eccbytes = ECC_8BITS,
+}; +#endif /* CONFIG_SYS_NAND_15BIT_HW_ECC_OOBFIRST */
+void denali_nand_init(struct nand_chip *nand) +{
- denali.flash_reg = (void __iomem *)CONFIG_SYS_NAND_REGS_BASE;
- denali.flash_mem = (void __iomem *)CONFIG_SYS_NAND_DATA_BASE;
- nand->chip_delay = 0;
+#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
- /* check whether flash got BBT table (located at end of flash). As we
* use NAND_BBT_NO_OOB, the BBT page will start with
* bbt_pattern. We will have mirror pattern too */
- nand->options |= NAND_BBT_USE_FLASH;
- /*
* We are using main + spare with ECC support. As BBT need ECC support,
* we need to ensure BBT code don't write to OOB for the BBT pattern.
* All BBT info will be stored into data area with ECC support.
*/
- nand->options |= NAND_BBT_NO_OOB;
+#endif
- nand->ecc.mode = NAND_ECC_HW;
- nand->ecc.size = CONFIG_NAND_DENALI_ECC_SIZE;
- nand->ecc.read_oob = denali_read_oob;
- nand->ecc.write_oob = denali_write_oob;
- nand->ecc.read_page = denali_read_page;
- nand->ecc.read_page_raw = denali_read_page_raw;
- nand->ecc.write_page = denali_write_page;
- nand->ecc.write_page_raw = denali_write_page_raw;
+#ifdef CONFIG_SYS_NAND_15BIT_HW_ECC_OOBFIRST
- /* 15bit ECC */
- nand->ecc.bytes = 26;
- nand->ecc.layout = &nand_15bit_oob;
+#else /* 8bit ECC */
- nand->ecc.bytes = 14;
- nand->ecc.layout = &nand_8bit_oob;
+#endif
- nand->ecc.calculate = denali_ecc_calculate;
- nand->ecc.correct = denali_ecc_correct;
- nand->ecc.hwctl = denali_ecc_hwctl;
- /* Set address of hardware control function */
- nand->cmdfunc = denali_cmdfunc;
- nand->read_byte = denali_read_byte;
- nand->read_buf = denali_read_buf;
- nand->select_chip = denali_select_chip;
- nand->waitfunc = denali_waitfunc;
- denali_hw_init();
+}
+int board_nand_init(struct nand_chip *chip) +{
- puts("NAND: Denali NAND controller\n");
- denali_nand_init(chip);
- return 0;
+} diff --git a/drivers/mtd/nand/denali_nand.h b/drivers/mtd/nand/denali_nand.h new file mode 100644 index 0000000..fd91c64 --- /dev/null +++ b/drivers/mtd/nand/denali_nand.h @@ -0,0 +1,501 @@ +/*
- Copyright (C) 2013 Altera Corporation <www.altera.com>
- Copyright (C) 2009-2010, Intel Corporation and its suppliers.
- SPDX-License-Identifier: GPL-2.0+
- */
+typedef int irqreturn_t;
+#define IRQ_HANDLED 1 +#define IRQ_NONE 0
+#define DEVICE_RESET 0x0 +#define DEVICE_RESET__BANK0 0x0001 +#define DEVICE_RESET__BANK1 0x0002 +#define DEVICE_RESET__BANK2 0x0004 +#define DEVICE_RESET__BANK3 0x0008
+#define TRANSFER_SPARE_REG 0x10 +#define TRANSFER_SPARE_REG__FLAG 0x0001
+#define LOAD_WAIT_CNT 0x20 +#define LOAD_WAIT_CNT__VALUE 0xffff
+#define PROGRAM_WAIT_CNT 0x30 +#define PROGRAM_WAIT_CNT__VALUE 0xffff
+#define ERASE_WAIT_CNT 0x40 +#define ERASE_WAIT_CNT__VALUE 0xffff
+#define INT_MON_CYCCNT 0x50 +#define INT_MON_CYCCNT__VALUE 0xffff
+#define RB_PIN_ENABLED 0x60 +#define RB_PIN_ENABLED__BANK0 0x0001 +#define RB_PIN_ENABLED__BANK1 0x0002 +#define RB_PIN_ENABLED__BANK2 0x0004 +#define RB_PIN_ENABLED__BANK3 0x0008
+#define MULTIPLANE_OPERATION 0x70 +#define MULTIPLANE_OPERATION__FLAG 0x0001
+#define MULTIPLANE_READ_ENABLE 0x80 +#define MULTIPLANE_READ_ENABLE__FLAG 0x0001
+#define COPYBACK_DISABLE 0x90 +#define COPYBACK_DISABLE__FLAG 0x0001
+#define CACHE_WRITE_ENABLE 0xa0 +#define CACHE_WRITE_ENABLE__FLAG 0x0001
+#define CACHE_READ_ENABLE 0xb0 +#define CACHE_READ_ENABLE__FLAG 0x0001
+#define PREFETCH_MODE 0xc0 +#define PREFETCH_MODE__PREFETCH_EN 0x0001 +#define PREFETCH_MODE__PREFETCH_BURST_LENGTH 0xfff0
+#define CHIP_ENABLE_DONT_CARE 0xd0 +#define CHIP_EN_DONT_CARE__FLAG 0x01
+#define ECC_ENABLE 0xe0 +#define ECC_ENABLE__FLAG 0x0001
+#define GLOBAL_INT_ENABLE 0xf0 +#define GLOBAL_INT_EN_FLAG 0x01
+#define WE_2_RE 0x100 +#define WE_2_RE__VALUE 0x003f
+#define ADDR_2_DATA 0x110 +#define ADDR_2_DATA__VALUE 0x003f
+#define RE_2_WE 0x120 +#define RE_2_WE__VALUE 0x003f
+#define ACC_CLKS 0x130 +#define ACC_CLKS__VALUE 0x000f
+#define NUMBER_OF_PLANES 0x140 +#define NUMBER_OF_PLANES__VALUE 0x0007
+#define PAGES_PER_BLOCK 0x150 +#define PAGES_PER_BLOCK__VALUE 0xffff
+#define DEVICE_WIDTH 0x160 +#define DEVICE_WIDTH__VALUE 0x0003
+#define DEVICE_MAIN_AREA_SIZE 0x170 +#define DEVICE_MAIN_AREA_SIZE__VALUE 0xffff
+#define DEVICE_SPARE_AREA_SIZE 0x180 +#define DEVICE_SPARE_AREA_SIZE__VALUE 0xffff
+#define TWO_ROW_ADDR_CYCLES 0x190 +#define TWO_ROW_ADDR_CYCLES__FLAG 0x0001
+#define MULTIPLANE_ADDR_RESTRICT 0x1a0 +#define MULTIPLANE_ADDR_RESTRICT__FLAG 0x0001
+#define ECC_CORRECTION 0x1b0 +#define ECC_CORRECTION__VALUE 0x001f
+#define READ_MODE 0x1c0 +#define READ_MODE__VALUE 0x000f
+#define WRITE_MODE 0x1d0 +#define WRITE_MODE__VALUE 0x000f
+#define COPYBACK_MODE 0x1e0 +#define COPYBACK_MODE__VALUE 0x000f
+#define RDWR_EN_LO_CNT 0x1f0 +#define RDWR_EN_LO_CNT__VALUE 0x001f
+#define RDWR_EN_HI_CNT 0x200 +#define RDWR_EN_HI_CNT__VALUE 0x001f
+#define MAX_RD_DELAY 0x210 +#define MAX_RD_DELAY__VALUE 0x000f
+#define CS_SETUP_CNT 0x220 +#define CS_SETUP_CNT__VALUE 0x001f
+#define SPARE_AREA_SKIP_BYTES 0x230 +#define SPARE_AREA_SKIP_BYTES__VALUE 0x003f
+#define SPARE_AREA_MARKER 0x240 +#define SPARE_AREA_MARKER__VALUE 0xffff
+#define DEVICES_CONNECTED 0x250 +#define DEVICES_CONNECTED__VALUE 0x0007
+#define DIE_MASK 0x260 +#define DIE_MASK__VALUE 0x00ff
+#define FIRST_BLOCK_OF_NEXT_PLANE 0x270 +#define FIRST_BLOCK_OF_NEXT_PLANE__VALUE 0xffff
+#define WRITE_PROTECT 0x280 +#define WRITE_PROTECT__FLAG 0x0001
+#define RE_2_RE 0x290 +#define RE_2_RE__VALUE 0x003f
+#define MANUFACTURER_ID 0x300 +#define MANUFACTURER_ID__VALUE 0x00ff
+#define DEVICE_ID 0x310 +#define DEVICE_ID__VALUE 0x00ff
+#define DEVICE_PARAM_0 0x320 +#define DEVICE_PARAM_0__VALUE 0x00ff
+#define DEVICE_PARAM_1 0x330 +#define DEVICE_PARAM_1__VALUE 0x00ff
+#define DEVICE_PARAM_2 0x340 +#define DEVICE_PARAM_2__VALUE 0x00ff
+#define LOGICAL_PAGE_DATA_SIZE 0x350 +#define LOGICAL_PAGE_DATA_SIZE__VALUE 0xffff
+#define LOGICAL_PAGE_SPARE_SIZE 0x360 +#define LOGICAL_PAGE_SPARE_SIZE__VALUE 0xffff
+#define REVISION 0x370 +#define REVISION__VALUE 0xffff
+#define ONFI_DEVICE_FEATURES 0x380 +#define ONFI_DEVICE_FEATURES__VALUE 0x003f
+#define ONFI_OPTIONAL_COMMANDS 0x390 +#define ONFI_OPTIONAL_COMMANDS__VALUE 0x003f
+#define ONFI_TIMING_MODE 0x3a0 +#define ONFI_TIMING_MODE__VALUE 0x003f
+#define ONFI_PGM_CACHE_TIMING_MODE 0x3b0 +#define ONFI_PGM_CACHE_TIMING_MODE__VALUE 0x003f
+#define ONFI_DEVICE_NO_OF_LUNS 0x3c0 +#define ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS 0x00ff +#define ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE 0x0100
+#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L 0x3d0 +#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L__VALUE 0xffff
+#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U 0x3e0 +#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U__VALUE 0xffff
+#define FEATURES 0x3f0 +#define FEATURES__N_BANKS 0x0003 +#define FEATURES__ECC_MAX_ERR 0x003c +#define FEATURES__DMA 0x0040 +#define FEATURES__CMD_DMA 0x0080 +#define FEATURES__PARTITION 0x0100 +#define FEATURES__XDMA_SIDEBAND 0x0200 +#define FEATURES__GPREG 0x0400 +#define FEATURES__INDEX_ADDR 0x0800
+#define TRANSFER_MODE 0x400 +#define TRANSFER_MODE__VALUE 0x0003
+#define INTR_STATUS(__bank) (0x410 + ((__bank) * 0x50)) +#define INTR_EN(__bank) (0x420 + ((__bank) * 0x50))
+/*
- Some versions of the IP have the ECC fixup handled in hardware. In this
- configuration we only get interrupted when the error is uncorrectable.
- Unfortunately this bit replaces INTR_STATUS__ECC_TRANSACTION_DONE from the
- old IP.
- */
+#define INTR_STATUS__ECC_UNCOR_ERR 0x0001 +#define INTR_STATUS__ECC_TRANSACTION_DONE 0x0001 +#define INTR_STATUS__ECC_ERR 0x0002 +#define INTR_STATUS__DMA_CMD_COMP 0x0004 +#define INTR_STATUS__TIME_OUT 0x0008 +#define INTR_STATUS__PROGRAM_FAIL 0x0010 +#define INTR_STATUS__ERASE_FAIL 0x0020 +#define INTR_STATUS__LOAD_COMP 0x0040 +#define INTR_STATUS__PROGRAM_COMP 0x0080 +#define INTR_STATUS__ERASE_COMP 0x0100 +#define INTR_STATUS__PIPE_CPYBCK_CMD_COMP 0x0200 +#define INTR_STATUS__LOCKED_BLK 0x0400 +#define INTR_STATUS__UNSUP_CMD 0x0800 +#define INTR_STATUS__INT_ACT 0x1000 +#define INTR_STATUS__RST_COMP 0x2000 +#define INTR_STATUS__PIPE_CMD_ERR 0x4000 +#define INTR_STATUS__PAGE_XFER_INC 0x8000
+#define INTR_EN__ECC_TRANSACTION_DONE 0x0001 +#define INTR_EN__ECC_ERR 0x0002 +#define INTR_EN__DMA_CMD_COMP 0x0004 +#define INTR_EN__TIME_OUT 0x0008 +#define INTR_EN__PROGRAM_FAIL 0x0010 +#define INTR_EN__ERASE_FAIL 0x0020 +#define INTR_EN__LOAD_COMP 0x0040 +#define INTR_EN__PROGRAM_COMP 0x0080 +#define INTR_EN__ERASE_COMP 0x0100 +#define INTR_EN__PIPE_CPYBCK_CMD_COMP 0x0200 +#define INTR_EN__LOCKED_BLK 0x0400 +#define INTR_EN__UNSUP_CMD 0x0800 +#define INTR_EN__INT_ACT 0x1000 +#define INTR_EN__RST_COMP 0x2000 +#define INTR_EN__PIPE_CMD_ERR 0x4000 +#define INTR_EN__PAGE_XFER_INC 0x8000
+#define PAGE_CNT(__bank) (0x430 + ((__bank) * 0x50)) +#define ERR_PAGE_ADDR(__bank) (0x440 + ((__bank) * 0x50)) +#define ERR_BLOCK_ADDR(__bank) (0x450 + ((__bank) * 0x50))
+#define DATA_INTR 0x550 +#define DATA_INTR__WRITE_SPACE_AV 0x0001 +#define DATA_INTR__READ_DATA_AV 0x0002
+#define DATA_INTR_EN 0x560 +#define DATA_INTR_EN__WRITE_SPACE_AV 0x0001 +#define DATA_INTR_EN__READ_DATA_AV 0x0002
+#define GPREG_0 0x570 +#define GPREG_0__VALUE 0xffff
+#define GPREG_1 0x580 +#define GPREG_1__VALUE 0xffff
+#define GPREG_2 0x590 +#define GPREG_2__VALUE 0xffff
+#define GPREG_3 0x5a0 +#define GPREG_3__VALUE 0xffff
+#define ECC_THRESHOLD 0x600 +#define ECC_THRESHOLD__VALUE 0x03ff
+#define ECC_ERROR_BLOCK_ADDRESS 0x610 +#define ECC_ERROR_BLOCK_ADDRESS__VALUE 0xffff
+#define ECC_ERROR_PAGE_ADDRESS 0x620 +#define ECC_ERROR_PAGE_ADDRESS__VALUE 0x0fff +#define ECC_ERROR_PAGE_ADDRESS__BANK 0xf000
+#define ECC_ERROR_ADDRESS 0x630 +#define ECC_ERROR_ADDRESS__OFFSET 0x0fff +#define ECC_ERROR_ADDRESS__SECTOR_NR 0xf000
+#define ERR_CORRECTION_INFO 0x640 +#define ERR_CORRECTION_INFO__BYTEMASK 0x00ff +#define ERR_CORRECTION_INFO__DEVICE_NR 0x0f00 +#define ERR_CORRECTION_INFO__ERROR_TYPE 0x4000 +#define ERR_CORRECTION_INFO__LAST_ERR_INFO 0x8000
+#define DMA_ENABLE 0x700 +#define DMA_ENABLE__FLAG 0x0001
+#define IGNORE_ECC_DONE 0x710 +#define IGNORE_ECC_DONE__FLAG 0x0001
+#define DMA_INTR 0x720 +#define DMA_INTR__TARGET_ERROR 0x0001 +#define DMA_INTR__DESC_COMP_CHANNEL0 0x0002 +#define DMA_INTR__DESC_COMP_CHANNEL1 0x0004 +#define DMA_INTR__DESC_COMP_CHANNEL2 0x0008 +#define DMA_INTR__DESC_COMP_CHANNEL3 0x0010 +#define DMA_INTR__MEMCOPY_DESC_COMP 0x0020
+#define DMA_INTR_EN 0x730 +#define DMA_INTR_EN__TARGET_ERROR 0x0001 +#define DMA_INTR_EN__DESC_COMP_CHANNEL0 0x0002 +#define DMA_INTR_EN__DESC_COMP_CHANNEL1 0x0004 +#define DMA_INTR_EN__DESC_COMP_CHANNEL2 0x0008 +#define DMA_INTR_EN__DESC_COMP_CHANNEL3 0x0010 +#define DMA_INTR_EN__MEMCOPY_DESC_COMP 0x0020
+#define TARGET_ERR_ADDR_LO 0x740 +#define TARGET_ERR_ADDR_LO__VALUE 0xffff
+#define TARGET_ERR_ADDR_HI 0x750 +#define TARGET_ERR_ADDR_HI__VALUE 0xffff
+#define CHNL_ACTIVE 0x760 +#define CHNL_ACTIVE__CHANNEL0 0x0001 +#define CHNL_ACTIVE__CHANNEL1 0x0002 +#define CHNL_ACTIVE__CHANNEL2 0x0004 +#define CHNL_ACTIVE__CHANNEL3 0x0008
+#define ACTIVE_SRC_ID 0x800 +#define ACTIVE_SRC_ID__VALUE 0x00ff
+#define PTN_INTR 0x810 +#define PTN_INTR__CONFIG_ERROR 0x0001 +#define PTN_INTR__ACCESS_ERROR_BANK0 0x0002 +#define PTN_INTR__ACCESS_ERROR_BANK1 0x0004 +#define PTN_INTR__ACCESS_ERROR_BANK2 0x0008 +#define PTN_INTR__ACCESS_ERROR_BANK3 0x0010 +#define PTN_INTR__REG_ACCESS_ERROR 0x0020
+#define PTN_INTR_EN 0x820 +#define PTN_INTR_EN__CONFIG_ERROR 0x0001 +#define PTN_INTR_EN__ACCESS_ERROR_BANK0 0x0002 +#define PTN_INTR_EN__ACCESS_ERROR_BANK1 0x0004 +#define PTN_INTR_EN__ACCESS_ERROR_BANK2 0x0008 +#define PTN_INTR_EN__ACCESS_ERROR_BANK3 0x0010 +#define PTN_INTR_EN__REG_ACCESS_ERROR 0x0020
+#define PERM_SRC_ID(__bank) (0x830 + ((__bank) * 0x40)) +#define PERM_SRC_ID__SRCID 0x00ff +#define PERM_SRC_ID__DIRECT_ACCESS_ACTIVE 0x0800 +#define PERM_SRC_ID__WRITE_ACTIVE 0x2000 +#define PERM_SRC_ID__READ_ACTIVE 0x4000 +#define PERM_SRC_ID__PARTITION_VALID 0x8000
+#define MIN_BLK_ADDR(__bank) (0x840 + ((__bank) * 0x40)) +#define MIN_BLK_ADDR__VALUE 0xffff
+#define MAX_BLK_ADDR(__bank) (0x850 + ((__bank) * 0x40)) +#define MAX_BLK_ADDR__VALUE 0xffff
+#define MIN_MAX_BANK(__bank) (0x860 + ((__bank) * 0x40)) +#define MIN_MAX_BANK__MIN_VALUE 0x0003 +#define MIN_MAX_BANK__MAX_VALUE 0x000c
+/* ffsdefs.h */ +#define CLEAR 0 /*use this to clear a field instead of "fail"*/ +#define SET 1 /*use this to set a field instead of "pass"*/ +#define FAIL 1 /*failed flag*/ +#define PASS 0 /*success flag*/ +#define ERR -1 /*error flag*/
+/* lld.h */ +#define GOOD_BLOCK 0 +#define DEFECTIVE_BLOCK 1 +#define READ_ERROR 2
+#define CLK_X 5 +#define CLK_MULTI 4
+/* spectraswconfig.h */ +#define CMD_DMA 0
+#define SPECTRA_PARTITION_ID 0 +/**** Block Table and Reserved Block Parameters *****/ +#define SPECTRA_START_BLOCK 3 +#define NUM_FREE_BLOCKS_GATE 30
+/* KBV - Updated to LNW scratch register address */ +#define SCRATCH_REG_ADDR CONFIG_MTD_NAND_DENALI_SCRATCH_REG_ADDR +#define SCRATCH_REG_SIZE 64
+#define GLOB_HWCTL_DEFAULT_BLKS 2048
+#define SUPPORT_15BITECC 1 +#define SUPPORT_8BITECC 1
+#define CUSTOM_CONF_PARAMS 0
+#define ONFI_BLOOM_TIME 1 +#define MODE5_WORKAROUND 0
+/* lld_nand.h */ +/*
- NAND Flash Controller Device Driver
- Copyright (c) 2009, Intel Corporation and its suppliers.
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
- */
+#ifndef _LLD_NAND_ +#define _LLD_NAND_
+#define MODE_00 0x00000000 +#define MODE_01 0x04000000 +#define MODE_10 0x08000000 +#define MODE_11 0x0C000000
+#define DATA_TRANSFER_MODE 0 +#define PROTECTION_PER_BLOCK 1 +#define LOAD_WAIT_COUNT 2 +#define PROGRAM_WAIT_COUNT 3 +#define ERASE_WAIT_COUNT 4 +#define INT_MONITOR_CYCLE_COUNT 5 +#define READ_BUSY_PIN_ENABLED 6 +#define MULTIPLANE_OPERATION_SUPPORT 7 +#define PRE_FETCH_MODE 8 +#define CE_DONT_CARE_SUPPORT 9 +#define COPYBACK_SUPPORT 10 +#define CACHE_WRITE_SUPPORT 11 +#define CACHE_READ_SUPPORT 12 +#define NUM_PAGES_IN_BLOCK 13 +#define ECC_ENABLE_SELECT 14 +#define WRITE_ENABLE_2_READ_ENABLE 15 +#define ADDRESS_2_DATA 16 +#define READ_ENABLE_2_WRITE_ENABLE 17 +#define TWO_ROW_ADDRESS_CYCLES 18 +#define MULTIPLANE_ADDRESS_RESTRICT 19 +#define ACC_CLOCKS 20 +#define READ_WRITE_ENABLE_LOW_COUNT 21 +#define READ_WRITE_ENABLE_HIGH_COUNT 22
+#define ECC_SECTOR_SIZE 512
+#define DENALI_BUF_SIZE (NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE)
+struct nand_buf {
- int head;
- int tail;
- /* seprating dma_buf as buf can be used for status read purpose */
- uint8_t dma_buf[DENALI_BUF_SIZE] __aligned(64);
- uint8_t buf[DENALI_BUF_SIZE];
+};
+#define INTEL_CE4100 1 +#define INTEL_MRST 2 +#define DT 3
+struct denali_nand_info {
- struct mtd_info mtd;
- struct nand_chip *nand;
- int flash_bank; /* currently selected chip */
- int status;
- int platform;
- struct nand_buf buf;
- struct device *dev;
- int total_used_banks;
- uint32_t block; /* stored for future use */
- uint32_t page;
- void __iomem *flash_reg; /* Mapped io reg base address */
- void __iomem *flash_mem; /* Mapped io reg base address */
- /* elements used by ISR */
- /*struct completion complete;*/
- uint32_t irq_status;
- int irq_debug_array[32];
- int idx;
- int irq;
- uint32_t devnum; /* represent how many nands connected */
- uint32_t fwblks; /* represent how many blocks FW used */
- uint32_t totalblks;
- uint32_t blksperchip;
- uint32_t bbtskipbytes;
- uint32_t max_banks;
+};
+#endif /*_LLD_NAND_*/