
On Wed, Nov 17, 2021 at 1:25 PM Roman Bacik roman.bacik@broadcom.com wrote:
From: Rayagonda Kokatanur rayagonda.kokatanur@broadcom.com
IPROC qspi driver supports both BSPI and MSPI modes.
Signed-off-by: Rayagonda Kokatanur rayagonda.kokatanur@broadcom.com Signed-off-by: Bharat Gooty bharat.gooty@broadcom.com Acked-by: Rayagonda Kokatanur rayagonda.kokatanur@broadcom.com
Signed-off-by: Roman Bacik roman.bacik@broadcom.com
Changes in v6:
- remove priv->mode_4byte
- remove IPROC_BSPI_READ_SUPPORTED
Changes in v5:
- add binding document
- implement spi-mem interface for bspi mode
- use op->cmd.opcode for BSPI_CMD_AND_MODE_BYTE_REG
- move iproc_qspi.c to spi
Changes in v4:
- move iproc_qspi.c from spi to mtd/spi
- remove iproc_qspi.h
- rename IPROC_QSPI to SPI_FLASH_IPROC
Changes in v3:
- fix warning by including linux/delay.h
- change ofdata_to_platdata to of_to_plat
- change priv_auto_alloc_size to priv_auto
Changes in v2:
- remove include spi-nor.h
- define and use named BITs for writing register values
- remove bspi_set_4byte_mode() method
.../spi/spi-iproc-qspi.txt | 29 + drivers/spi/Kconfig | 6 + drivers/spi/Makefile | 1 + drivers/spi/iproc_qspi.c | 630 ++++++++++++++++++ 4 files changed, 666 insertions(+) create mode 100644 doc/device-tree-bindings/spi/spi-iproc-qspi.txt create mode 100644 drivers/spi/iproc_qspi.c
diff --git a/doc/device-tree-bindings/spi/spi-iproc-qspi.txt b/doc/device-tree-bindings/spi/spi-iproc-qspi.txt new file mode 100644 index 000000000000..fb9f1c2ae2da --- /dev/null +++ b/doc/device-tree-bindings/spi/spi-iproc-qspi.txt @@ -0,0 +1,29 @@ +Broadcom Iproc QSPI controller Device Tree Bindings +---------------------------------------------------
+Required properties: +- compatible: should be "brcm,iproc-qspi". +- reg: Base address and size of the controllers memory area. +- reg-names: "bspi", "bspi_raf", "mspi". +- #address-cells: <1>, as required by generic SPI binding. +- #size-cells: <0>, also as required by generic SPI binding.
+Example:
qspi: spi@370000 {
compatible = "brcm,iproc-qspi";
reg = <0x00370000 0x100>,
<0x00370100 0x100>,
<0x00370200 0x200>;
reg-names = "bspi", "bspi_raf", "mspi";
#address-cells = <1>;
#size-cells = <0>;
spi_nor_flash: spi_flash@0 {
compatible = "jedec,spi-nor";
reg = <0>;
spi-max-frequency = <12500000>;
spi-cpol;
spi-cpha;
spi-tx-bus-width = <1>;
spi-rx-bus-width = <4>;
};
};
diff --git a/drivers/spi/Kconfig b/drivers/spi/Kconfig index d07e9a28af82..faebc212753e 100644 --- a/drivers/spi/Kconfig +++ b/drivers/spi/Kconfig @@ -178,6 +178,12 @@ config ICH_SPI access the SPI NOR flash on platforms embedding this Intel ICH IP core.
+config IPROC_QSPI
bool "Broadcom iProc QSPI Flash Controller driver"
help
Enable Broadcom iProc QSPI Flash Controller driver.
This driver can be used to access the SPI NOR flash.
config KIRKWOOD_SPI bool "Marvell Kirkwood SPI Driver" help diff --git a/drivers/spi/Makefile b/drivers/spi/Makefile index d2f24bccefd3..869763187062 100644 --- a/drivers/spi/Makefile +++ b/drivers/spi/Makefile @@ -33,6 +33,7 @@ obj-$(CONFIG_FSL_DSPI) += fsl_dspi.o obj-$(CONFIG_FSL_ESPI) += fsl_espi.o obj-$(CONFIG_SYNQUACER_SPI) += spi-synquacer.o obj-$(CONFIG_ICH_SPI) += ich.o +obj-$(CONFIG_IPROC_QSPI) += iproc_qspi.o obj-$(CONFIG_KIRKWOOD_SPI) += kirkwood_spi.o obj-$(CONFIG_MESON_SPIFC) += meson_spifc.o obj-$(CONFIG_MPC8XX_SPI) += mpc8xx_spi.o diff --git a/drivers/spi/iproc_qspi.c b/drivers/spi/iproc_qspi.c new file mode 100644 index 000000000000..4969ba83171a --- /dev/null +++ b/drivers/spi/iproc_qspi.c @@ -0,0 +1,630 @@ +// SPDX-License-Identifier: GPL-2.0+ +/*
- Copyright 2020-2021 Broadcom
- */
+#include <common.h> +#include <dm.h> +#include <spi.h> +#include <spi-mem.h> +#include <asm/io.h> +#include <linux/delay.h> +#include <linux/err.h>
+/* 175MHz */ +#define QSPI_AXI_CLK 175000000 +#define QSPI_WAIT_TIMEOUT_MS 200U +#define DWORD_ALIGNED(a) (!(((ulong)(a)) & 3))
+/*SPI configuration */ +#define IPROC_BSPI_READ_DUMMY_CYCLES 0x08
+/* Chip attributes */ +#define SPBR_MIN 8U +#define SPBR_MAX 255U +#define NUM_CDRAM 16U
+#define CDRAM_PCS0 2 +#define CDRAM_CONT BIT(7) +#define CDRAM_BITS_EN BIT(6) +#define CDRAM_QUAD_MODE BIT(8) +#define CDRAM_RBIT_INPUT BIT(10) +#define MSPI_SPE BIT(6) +#define MSPI_CONT_AFTER_CMD BIT(7)
+/* Register fields */ +#define MSPI_SPCR0_MSB_BITS_8 0x00000020 +#define BSPI_RAF_CONTROL_START_MASK 0x00000001 +#define BSPI_RAF_STATUS_SESSION_BUSY_MASK 0x00000001 +#define BSPI_RAF_STATUS_FIFO_EMPTY_MASK 0x00000002 +#define BSPI_STRAP_OVERRIDE_DATA_QUAD_SHIFT 3 +#define BSPI_STRAP_OVERRIDE_DATA_DUAL_SHIFT 1 +#define BSPI_STRAP_OVERRIDE_SHIFT 0
+/* MSPI registers */ +#define MSPI_SPCR0_LSB_REG 0x000 +#define MSPI_SPCR0_MSB_REG 0x004 +#define MSPI_SPCR1_LSB_REG 0x008 +#define MSPI_SPCR1_MSB_REG 0x00c +#define MSPI_NEWQP_REG 0x010 +#define MSPI_ENDQP_REG 0x014 +#define MSPI_SPCR2_REG 0x018 +#define MSPI_STATUS_REG 0x020 +#define MSPI_CPTQP_REG 0x024 +#define MSPI_TXRAM_REG 0x040 +#define MSPI_RXRAM_REG 0x0c0 +#define MSPI_CDRAM_REG 0x140 +#define MSPI_WRITE_LOCK_REG 0x180 +#define MSPI_DISABLE_FLUSH_GEN_REG 0x184
+/* BSPI registers */ +#define BSPI_REVISION_ID_REG 0x000 +#define BSPI_SCRATCH_REG 0x004 +#define BSPI_MAST_N_BOOT_CTRL_REG 0x008 +#define BSPI_BUSY_STATUS_REG 0x00c +#define BSPI_INTR_STATUS_REG 0x010 +#define BSPI_B0_STATUS_REG 0x014 +#define BSPI_B0_CTRL_REG 0x018 +#define BSPI_B1_STATUS_REG 0x01c +#define BSPI_B1_CTRL_REG 0x020 +#define BSPI_STRAP_OVERRIDE_CTRL_REG 0x024 +#define BSPI_FLEX_MODE_ENABLE_REG 0x028 +#define BSPI_BITS_PER_CYCLE_REG 0x02C +#define BSPI_BITS_PER_PHASE_REG 0x030 +#define BSPI_CMD_AND_MODE_BYTE_REG 0x034 +#define BSPI_FLASH_UPPER_ADDR_BYTE_REG 0x038 +#define BSPI_XOR_VALUE_REG 0x03C +#define BSPI_XOR_ENABLE_REG 0x040 +#define BSPI_PIO_MODE_ENABLE_REG 0x044 +#define BSPI_PIO_IODIR_REG 0x048 +#define BSPI_PIO_DATA_REG 0x04C
+/* RAF registers */ +#define BSPI_RAF_START_ADDRESS_REG 0x00 +#define BSPI_RAF_NUM_WORDS_REG 0x04 +#define BSPI_RAF_CTRL_REG 0x08 +#define BSPI_RAF_FULLNESS_REG 0x0C +#define BSPI_RAF_WATERMARK_REG 0x10 +#define BSPI_RAF_STATUS_REG 0x14 +#define BSPI_RAF_READ_DATA_REG 0x18 +#define BSPI_RAF_WORD_CNT_REG 0x1C +#define BSPI_RAF_CURR_ADDR_REG 0x20
+#define XFER_DUAL BIT(30) +#define XFER_QUAD BIT(31)
+#define FLASH_BIT BIT(0) +#define MAST_N_BOOT_BIT BIT(0) +#define WRITE_LOCK_BIT BIT(0)
+/* state */ +enum bcm_qspi_state {
QSPI_STATE_DISABLED,
QSPI_STATE_MSPI,
QSPI_STATE_BSPI
+};
+/**
- struct bcmspi_priv - qspi private structure
- @max_hz: device transfer speed
- @spi_mode: spi mode (SPI_... flags)
- @frequency: spi max frequency
- @state: device state (MSPI/BSPI)
- @bspi_addr: bspi read address
- @mspi_16bit: mspi transfer mode
- @mspi: mspi registers block address
- @bspi: bspi registers block address
- @bspi_raf: bspi raf registers block address
- */
+struct bcmspi_priv {
uint max_hz;
uint spi_mode;
s32 frequency;
enum bcm_qspi_state state;
u32 bspi_addr;
int mspi_16bit;
struct spi_mem_op *op;
void __iomem *mspi;
void __iomem *bspi;
void __iomem *bspi_raf;
+};
+/* BSPI mode */
+static void bspi_flush_prefetch_buffers(struct bcmspi_priv *priv) +{
writel(0, priv->bspi + BSPI_B0_CTRL_REG);
writel(0, priv->bspi + BSPI_B1_CTRL_REG);
writel(FLASH_BIT, priv->bspi + BSPI_B0_CTRL_REG);
writel(FLASH_BIT, priv->bspi + BSPI_B1_CTRL_REG);
+}
+static int bspi_enable(struct bcmspi_priv *priv) +{
if (priv->state == QSPI_STATE_BSPI)
return 0;
/* Disable write lock */
writel(0, priv->mspi + MSPI_WRITE_LOCK_REG);
/* Flush prefetch buffers */
bspi_flush_prefetch_buffers(priv);
/* Switch to BSPI */
writel(0, priv->bspi + BSPI_MAST_N_BOOT_CTRL_REG);
/* Update state */
priv->state = QSPI_STATE_BSPI;
return 0;
+}
+static int bspi_disable(struct bcmspi_priv *priv) +{
if (priv->state == QSPI_STATE_MSPI)
return 0;
if ((readl(priv->bspi + BSPI_MAST_N_BOOT_CTRL_REG) & 1) == 0) {
ulong start = get_timer(0);
while (get_timer(start) <
QSPI_WAIT_TIMEOUT_MS * CONFIG_SYS_HZ / 1000) {
if ((readl(priv->bspi + BSPI_BUSY_STATUS_REG) & 1)
== 0) {
/* Switch to MSPI */
writel(MAST_N_BOOT_BIT, priv->bspi +
BSPI_MAST_N_BOOT_CTRL_REG);
udelay(1);
break;
}
udelay(1);
}
if ((readl(priv->bspi + BSPI_MAST_N_BOOT_CTRL_REG) & 1) != 1)
return -1;
}
/* Enable write lock */
writel(WRITE_LOCK_BIT, priv->mspi + MSPI_WRITE_LOCK_REG);
/* Update state */
priv->state = QSPI_STATE_MSPI;
return 0;
+}
+static void bspi_read_via_raf(struct bcmspi_priv *priv, u8 *rx, uint bytes) +{
u32 status;
uint words;
int aligned;
/* Flush data from the previous session (unlikely) */
for (;;) {
status = readl(priv->bspi_raf + BSPI_RAF_STATUS_REG);
if (!(status & BSPI_RAF_STATUS_FIFO_EMPTY_MASK)) {
readl(priv->bspi_raf + BSPI_RAF_READ_DATA_REG);
continue;
}
if (!(status & BSPI_RAF_STATUS_SESSION_BUSY_MASK))
break;
}
/* Transfer is in words */
words = (bytes + 3) / 4;
/* Setup hardware */
writel(priv->bspi_addr & 0x00FFFFFF,
priv->bspi_raf + BSPI_RAF_START_ADDRESS_REG);
writel(words, priv->bspi_raf + BSPI_RAF_NUM_WORDS_REG);
writel(0, priv->bspi_raf + BSPI_RAF_WATERMARK_REG);
/* Kick off */
writel(BSPI_RAF_CONTROL_START_MASK, priv->bspi_raf + BSPI_RAF_CTRL_REG);
/* Reading the data */
aligned = DWORD_ALIGNED(rx);
while (bytes) {
status = readl(priv->bspi_raf + BSPI_RAF_STATUS_REG);
if (!(status & BSPI_RAF_STATUS_FIFO_EMPTY_MASK)) {
u32 data = le32_to_cpu(readl(priv->bspi_raf +
BSPI_RAF_READ_DATA_REG));
/* Check if we can use the whole word */
if (aligned && bytes >= 4) {
/*
* RAF is LE only,
* convert data to host endianness
*/
*(u32 *)rx = le32_to_cpu(data);
rx += 4;
bytes -= 4;
} else {
uint chunk = min(bytes, 4U);
/* Read out bytes one by one */
while (chunk) {
*rx++ = (u8)data;
data >>= 8;
chunk--;
bytes--;
}
}
continue;
}
if (!(status & BSPI_RAF_STATUS_SESSION_BUSY_MASK)) {
/* FIFO is empty and the session is done */
break;
}
}
+}
+static int bspi_read(struct bcmspi_priv *priv, const struct spi_mem_op *op) +{
u8 *rx = op->data.buf.in;
uint bytes = op->data.nbytes;
ulong flags = SPI_XFER_ONCE;
We will remove unnecessary flags from this method.
uint trans;
priv->bspi_addr = op->addr.val;
/* Transfer data if any */
while (bytes > 0 && rx) {
trans = bytes;
bspi_read_via_raf(priv, rx, trans);
priv->bspi_addr += trans;
rx += trans;
bytes -= trans;
}
/* Flush prefetch buffers at the end */
if (flags & SPI_XFER_END)
bspi_flush_prefetch_buffers(priv);
return 0;
+}
+static int bspi_set_flex_mode(struct udevice *dev, const struct spi_mem_op *op) +{
struct udevice *bus = dev->parent;
struct bcmspi_priv *priv = dev_get_priv(bus);
int bpc = 0;
int bpp = IPROC_BSPI_READ_DUMMY_CYCLES;
We will remove this hard-coded value and read it from op->dummy instead.
int opcode = op->cmd.opcode;
int flex = 1;
if (priv->spi_mode & SPI_RX_QUAD)
bpc = 2;
else if (priv->spi_mode & SPI_RX_DUAL)
bpc = 1;
else
flex = 0;
writel(0, priv->bspi + BSPI_FLEX_MODE_ENABLE_REG);
writel(bpc, priv->bspi + BSPI_BITS_PER_CYCLE_REG);
writel(bpp, priv->bspi + BSPI_BITS_PER_PHASE_REG);
writel(opcode, priv->bspi + BSPI_CMD_AND_MODE_BYTE_REG);
writel(flex, priv->bspi + BSPI_FLEX_MODE_ENABLE_REG);
return 0;
+}
+static int bspi_exec_op(struct spi_slave *slave,
const struct spi_mem_op *op)
+{
struct udevice *bus = slave->dev->parent;
struct bcmspi_priv *priv = dev_get_priv(bus);
int ret = -ENOTSUPP;
/* BSPI: read only */
if (op->data.dir == SPI_MEM_DATA_IN &&
op->data.nbytes && op->addr.nbytes) {
We will use op->addr.nbytes == 3 in the condition above, since we do not support 4-byte addresses in BSPI mode in this driver. Unsupported cases are handled by MSPI mode, which is much slower.
bspi_set_flex_mode(bus, op);
ret = bspi_read(priv, op);
}
return ret;
+}
+static const struct spi_controller_mem_ops bspi_mem_ops = {
.exec_op = bspi_exec_op,
+};
+/* MSPI mode */
+static int mspi_exec(struct bcmspi_priv *priv, uint bytes,
const u8 *tx, u8 *rx, ulong flags)
+{
u32 cdr = CDRAM_PCS0;
if (flags & XFER_QUAD) {
cdr |= CDRAM_QUAD_MODE;
if (!tx)
cdr |= CDRAM_RBIT_INPUT;
}
if (bytes & 1) {
/* Use 8-bit queue for odd-bytes transfer */
if (priv->mspi_16bit) {
setbits_le32(priv->mspi + MSPI_SPCR0_MSB_REG,
MSPI_SPCR0_MSB_BITS_8);
priv->mspi_16bit = 0;
}
} else {
/* Use 16-bit queue for even-bytes transfer */
if (!priv->mspi_16bit) {
clrbits_le32(priv->mspi + MSPI_SPCR0_MSB_REG,
MSPI_SPCR0_MSB_BITS_8);
priv->mspi_16bit = 1;
}
}
while (bytes) {
uint chunk;
uint queues;
ulong start;
uint i;
/* Separate code for 16bit and 8bit transfers for performance */
if (priv->mspi_16bit) {
/* Determine how many bytes to process this time */
chunk = min(bytes, NUM_CDRAM * 2);
queues = (chunk + 1) / 2;
bytes -= chunk;
/* Fill CDRAMs */
for (i = 0; i < queues; i++)
writel(cdr | CDRAM_CONT | CDRAM_BITS_EN,
priv->mspi + MSPI_CDRAM_REG + (i << 2));
/* Fill TXRAMs */
for (i = 0; i < chunk; i++)
writel(tx ? tx[i] : 0xff,
priv->mspi + MSPI_TXRAM_REG + (i << 2));
} else {
/* Determine how many bytes to process this time */
chunk = min(bytes, NUM_CDRAM);
queues = chunk;
bytes -= chunk;
/* Fill CDRAMs and TXRAMS */
for (i = 0; i < chunk; i++) {
writel(cdr | CDRAM_CONT,
priv->mspi + MSPI_CDRAM_REG + (i << 2));
writel(tx ? tx[i] : 0xff,
priv->mspi + MSPI_TXRAM_REG + (i << 3));
}
}
/* Setup queue pointers */
writel(0, priv->mspi + MSPI_NEWQP_REG);
writel(queues - 1, priv->mspi + MSPI_ENDQP_REG);
/* Deassert CS if requested and it's the last transfer */
if (bytes == 0 && (flags & SPI_XFER_END))
clrbits_le32(priv->mspi + MSPI_CDRAM_REG +
((queues - 1) << 2), CDRAM_CONT);
/* Kick off */
writel(0, priv->mspi + MSPI_STATUS_REG);
if (bytes == 0 && (flags & SPI_XFER_END))
writel(MSPI_SPE, priv->mspi + MSPI_SPCR2_REG);
else
writel(MSPI_SPE | MSPI_CONT_AFTER_CMD,
priv->mspi + MSPI_SPCR2_REG);
/* Wait for completion */
start = get_timer(0);
while (get_timer(start) <
QSPI_WAIT_TIMEOUT_MS * CONFIG_SYS_HZ / 1000) {
if (readl(priv->mspi + MSPI_STATUS_REG) & 1)
break;
}
if ((readl(priv->mspi + MSPI_STATUS_REG) & 1) == 0)
return -1;
/* Read data out */
if (rx) {
if (priv->mspi_16bit) {
for (i = 0; i < chunk; i++) {
rx[i] = readl(priv->mspi +
MSPI_RXRAM_REG +
(i << 2)) & 0xff;
}
} else {
for (i = 0; i < chunk; i++) {
rx[i] = readl(priv->mspi +
MSPI_RXRAM_REG +
(((i << 1) + 1) << 2))
& 0xff;
}
}
}
/* Advance pointers */
if (tx)
tx += chunk;
if (rx)
rx += chunk;
}
return 0;
+}
+static int mspi_xfer(struct udevice *dev, uint bitlen,
const void *dout, void *din, ulong flags)
+{
struct udevice *bus = dev->parent;
struct bcmspi_priv *priv = dev_get_priv(bus);
uint bytes;
int ret = 0;
/* we can only transfer multiples of 8 bits */
if (bitlen % 8)
return -ENOTSUPP;
bytes = bitlen / 8;
if (flags & SPI_XFER_BEGIN) {
/* Switch to MSPI */
ret = bspi_disable(priv);
if (ret)
return ret;
}
/* MSPI: Transfer */
if (bytes)
ret = mspi_exec(priv, bytes, dout, din, flags);
if (flags & SPI_XFER_END) {
/* Switch back to BSPI */
ret = bspi_enable(priv);
if (ret)
return ret;
}
return ret;
+}
+/* iProc interface */
+static int iproc_qspi_set_speed(struct udevice *bus, uint speed) +{
struct bcmspi_priv *priv = dev_get_priv(bus);
uint spbr;
priv->max_hz = speed;
/* MSPI: SCK configuration */
spbr = (QSPI_AXI_CLK - 1) / (2 * priv->max_hz) + 1;
writel(max(min(spbr, SPBR_MAX), SPBR_MIN),
priv->mspi + MSPI_SPCR0_LSB_REG);
return 0;
+}
+static int iproc_qspi_set_mode(struct udevice *bus, uint mode) +{
struct bcmspi_priv *priv = dev_get_priv(bus);
priv->spi_mode = mode;
/*
* BSPI: override the strap settings.
*/
if (mode & SPI_RX_QUAD) {
setbits_le32(priv->bspi + BSPI_STRAP_OVERRIDE_CTRL_REG,
1 << BSPI_STRAP_OVERRIDE_SHIFT);
setbits_le32(priv->bspi + BSPI_STRAP_OVERRIDE_CTRL_REG,
1 << BSPI_STRAP_OVERRIDE_DATA_QUAD_SHIFT);
clrbits_le32(priv->bspi + BSPI_STRAP_OVERRIDE_CTRL_REG,
1 << BSPI_STRAP_OVERRIDE_DATA_DUAL_SHIFT);
} else if (mode & SPI_RX_DUAL) {
setbits_le32(priv->bspi + BSPI_STRAP_OVERRIDE_CTRL_REG,
1 << BSPI_STRAP_OVERRIDE_SHIFT);
clrbits_le32(priv->bspi + BSPI_STRAP_OVERRIDE_CTRL_REG,
1 << BSPI_STRAP_OVERRIDE_DATA_QUAD_SHIFT);
setbits_le32(priv->bspi + BSPI_STRAP_OVERRIDE_CTRL_REG,
1 << BSPI_STRAP_OVERRIDE_DATA_DUAL_SHIFT);
} else {
clrbits_le32(priv->bspi + BSPI_STRAP_OVERRIDE_CTRL_REG,
1 << BSPI_STRAP_OVERRIDE_SHIFT);
clrbits_le32(priv->bspi + BSPI_STRAP_OVERRIDE_CTRL_REG,
1 << BSPI_STRAP_OVERRIDE_DATA_QUAD_SHIFT);
clrbits_le32(priv->bspi + BSPI_STRAP_OVERRIDE_CTRL_REG,
1 << BSPI_STRAP_OVERRIDE_DATA_DUAL_SHIFT);
}
/*
* MSPI: set master bit and mode.
*/
priv->mspi_16bit = 1;
writel(0x80 | /* Master */
(priv->spi_mode & 3), /* mode: CPOL / CPHA */
priv->mspi + MSPI_SPCR0_MSB_REG);
return 0;
+}
+static int iproc_qspi_claim_bus(struct udevice *dev) +{
/* Nothing to do */
return 0;
+}
+static int iproc_qspi_release_bus(struct udevice *dev) +{
struct udevice *bus = dev->parent;
struct bcmspi_priv *priv = dev_get_priv(bus);
/* Make sure no operation is in progress */
writel(0, priv->mspi + MSPI_SPCR2_REG);
udelay(1);
return 0;
+}
+static int iproc_qspi_of_to_plat(struct udevice *bus) +{
struct bcmspi_priv *priv = dev_get_priv(bus);
priv->bspi = (void __iomem *)dev_read_addr_name(bus, "bspi");
if (IS_ERR(priv->bspi)) {
debug("%s: Failed to get bspi base address\n", __func__);
return PTR_ERR(priv->bspi);
}
priv->bspi_raf = (void __iomem *)dev_read_addr_name(bus, "bspi_raf");
if (IS_ERR(priv->bspi_raf)) {
debug("%s: Failed to get bspi_raf base address\n", __func__);
return PTR_ERR(priv->bspi_raf);
}
priv->mspi = (void __iomem *)dev_read_addr_name(bus, "mspi");
if (IS_ERR(priv->mspi)) {
debug("%s: Failed to get mspi base address\n", __func__);
return PTR_ERR(priv->mspi);
}
return 0;
+}
+static int iproc_qspi_probe(struct udevice *bus) +{
struct bcmspi_priv *priv = dev_get_priv(bus);
/* MSPI: Basic hardware initialization */
writel(0, priv->mspi + MSPI_SPCR1_LSB_REG);
writel(0, priv->mspi + MSPI_SPCR1_MSB_REG);
writel(0, priv->mspi + MSPI_NEWQP_REG);
writel(0, priv->mspi + MSPI_ENDQP_REG);
writel(0, priv->mspi + MSPI_SPCR2_REG);
/* Enable BSPI by default */
bspi_enable(priv);
return 0;
+}
+static const struct dm_spi_ops iproc_qspi_ops = {
.claim_bus = iproc_qspi_claim_bus,
.release_bus = iproc_qspi_release_bus,
.xfer = mspi_xfer,
.set_speed = iproc_qspi_set_speed,
.set_mode = iproc_qspi_set_mode,
.mem_ops = &bspi_mem_ops,
+};
+static const struct udevice_id iproc_qspi_ids[] = {
{ .compatible = "brcm,iproc-qspi" },
{ }
+};
+U_BOOT_DRIVER(iproc_qspi) = {
.name = "iproc_qspi",
.id = UCLASS_SPI,
.of_match = iproc_qspi_ids,
.ops = &iproc_qspi_ops,
.of_to_plat = iproc_qspi_of_to_plat,
.priv_auto = sizeof(struct bcmspi_priv),
.probe = iproc_qspi_probe,
+};
2.17.1